Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг - задания по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#58563

Найдите все пары натуральных чисел x,y ∈ [1;8]  , удовлетворяющих равенству

√--------
 xx,xxx...= y,yyy...

(десятичная запись каждого из чисел xx,xxx...  и y,yyy...  состоит из бесконечного количества одинаковых цифр).

Источники: ПВГ-2013, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Давайте преобразуем наше равенство к какому-то более красивому виду. Нам поможет, что xx,xxx...= 100⋅x⋅0,11..., а y,yy...= 10⋅y⋅0,11...!

Подсказка 2

Подставим и заметим, что это делает наше выражение только лучше. Тогда если обозначить 0,111 за р, то р можно найти так - это сумма 0,1 + 0,01, + 0,001, ...... ТОгда это сумма геометрической прогрессии!

Показать ответ и решение

Нетрудно видеть, что xx,xxx...= 100⋅x⋅0,11...,  а y,yy...= 10⋅y⋅0,11...,  откуда сразу же

√-    ∘ ------
 x =y⋅  0,11...

Посчитаем 0,11...  через десятичную запись: 1-+ 1-+ ... { по ф ормуле суммы геометрической прогрессии } =-110 = 1.
10  100                                             1−110  9

Получаем  √ -
3  x= y  . Так как правая часть является натуральным числом, то x  должен быть квадратом какого-то натурального числа. На заданном промежутке из квадратов есть только 1  и 4  .

При x= 1  получаем     √-
y = 3 1 =3.

При x= 4  получаем     √-
y = 3 4 =6.

Ответ:

 (1,3),(4,6)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!