Ломоносов 2010
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Подсказка 1
Что интересного можно заметить про основания наших выражений? По свойствам степеней в правой части возведём (√2 + √3) сначала в -1 степень, а потом уже во всё что остаётся.
Подсказка 2
Если верно преобразовать основание в правой части, то перед нами теперь сравнение показательных функций с одинаковыми основаниями. А как мы обычно работаем с такими неравенствами?
Подсказка 3
Как наши основания сравниваются с единичкой: больше они или меньше? В связи с этим, сохраняется ли знак сравнения для показателей степени.
Подсказка 4
Заметим, что новые основания степеней взаимно обратны по свойствам логарифма. А значит мы можем провернуть тот же фокус, что делали с исходным неравенством: в левой части вынесем из показателя степени минус и возведём log₂3 сначала в -1 степень.
Подсказка 5
Снова оценим основания и перейдём к сравнению показателей. Осталось решить обычное квадратное неравенство и задачка убита!
По формуле разности квадратов . Поэтому неравенство эквивалентно
Так как основание степени слева и справа одинаковое и меньше единицы (ведь то неравенство
равносильно
Остаётся провернуть тот же фокус, используя . Получим
Так как
В итоге по методу интервалов
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!