Тема Всесиб - задания по годам

Всесиб 2019

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#49001Максимум баллов за задание: 7

В прямоугольном треугольнике ABC  точка M  – середина гипотенузы BC  , а точки P  и T  делят катеты AB  и AC  в отношении AP :PB = AT :TC = 1:2.  Обозначим за K  точку пересечения отрезков BT  и PM  , за E  – точку пересечения отрезков CP  и MT  , и за O  — точку пересечения отрезков CP  и BT.  Доказать, что четырёхугольник OKME  вписанный.

Источники: Всесиб-2019, 11.4 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

Так, нам нужно доказать вписанность четырехугольника. Либо это нужно делать доказательством равенства некоторых отношений, либо через углы(которые являются следствием подобия). Если предположить, что мы будем доказывать через углы, то наиболее оптимальными кажутся углы OME и OKE. С углом OME пока не понятно, куда его перекинуть, а вот угол OKE кажется более интересным.

Подсказка 2

Посмотрим на отрезок PT. В силу отношений из условия, по обратной теореме Фалеса, PT || BC. А какие еще подобия, из-за этой параллельности, вы видите на картинке?

Подсказка 3

На картинке есть две пары подобных треугольников: (PET и CEM) и (PKT и BKM). Отсюда вытекают подобия TE/EM=PT/CM, PT/BM=PK/KM и , в силу CM=BM, по обратной теореме Фалеса, получаем, что углы OKE и OBC равны. А вот и получилось перекинуть угол OKE. Остался только вопрос, какому еще углу равен угол OME? Сразу не видно, но кажется, что такого угла нет на картинке. А как его получить, если воспользоваться симметрией треугольника AMC(он равнобедренный) и тем, что AT/2=ТC?

Подсказка 4

Можно соединить М c серединой TC(пусть это точка D). Тогда, в силу симметрии, так как AT=DC, то углы OME и DMC равны. А куда теперь можно перекинуть угол DMC, если MD соединяет середины сторон ВС и TC?

Подсказка 5

В силу того, что MD-cредняя линия, угол DMC и угол TBC равны. То есть осталось доказать, что угол TBC равен углу OKE , и задача решена!(параллельность такая: бзззз)

Показать ответ и решение

PIC

Так как AP :PB = AT :TC = 1:2  , то PT ∥BC  по обратной теореме Фалеса, тогда из подобия треугольников PT :BC = 1:3.

Так как из подобия соответствующих треугольников TE-  PT-
EM = CM  и PT-  PK-
BM = KM  , то с учётом CM  =BM  по обратной теореме Фалеса получаем KE ∥BC  и ∠OKE = ∠OBC.

Теперь обозначим середину TC  как D  . Тогда MD ∥BT  как средняя линия и ∠OKE  = ∠OBC = ∠DMC  . Так как AMC  равнобедренный и      AC-  TC-
AT =  3 =  2 =DC  , то ∠AMT  = ∠MDC  =∠OKE  , что означает вписанность четырёхугольника OKME.

Ответ:

что и требовалось доказать

Ошибка.
Попробуйте повторить позже

Задача 2#61460Максимум баллов за задание: 7

Про число N  известно, что оно равно произведению десяти простых чисел (не обязательно различных). Кроме того, оказалось, что если каждый из этих десяти множителей увеличить на единицу, то полученное произведение будет делиться на N  . Чему может быть равно N?

Источники: Всесиб-2019, 8.2 (см. sesc.nsu.ru)

Подсказки к задаче

Подсказка 1

В таких задачах стоит иногда попробовать подобрать какие-то варианты. И здесь начнем замечать интересное: если есть простым делителем 5 или, например, 7, тогда новое число не делится на 5 или 7. Обобщим эту догадку.

Подсказка 2

И действительно, при р > 3 всегда будут проблемы при делении числа N на р. Представьте N в виде произведения двоек и троек, где двойки войдут со степенью, например, k.

Подсказка 3

Да, получится N = 2^k * 3^(10-k), а теперь фокус: двойки превращаются в тройки, а тройки - в четверки, то есть в двойки в квадрате! Остается найти k, и так получим ответ!

Показать ответ и решение

Рассмотрим наибольший простой делитель p  числа N.

Если p> 3  , то все остальные делители меньше его хотя бы на 2  (иначе есть чётное просто число больше двойки).

После увеличения всех простых множителей на 1  получатся:

  • p+ 1  : это не кратно p  , ведь p+1-=1 + 1
p      p  , а 1< p.
  • любое другое простое после увеличения на 1  будет меньше p  (ведь изначально оно было меньше p  хотя бы на 2  ), значит, также не кратно p  .

Отсюда заключаем, что случай p >3  невозможен, поскольку новое число не поделится на p  и соответственно не поделится на N.

Тогда можно представить N  в виде N =2k⋅310− k  . Увеличим все простые множители на 1  , получим 3k ⋅410−k = 3k⋅220−2k  , по условию это кратно 2k ⋅310−k  .

Значит, 20 − 2k≥ k,k≥ 10 − k ⇐ ⇒ k ∈[5,20∕3]  . Подходят только k∈ {5;6} . Осталось привести пример этих чисел и написать ответ.

Ответ:

 25⋅35,26⋅34

Ошибка.
Попробуйте повторить позже

Задача 3#79772Максимум баллов за задание: 7

Найти все натуральные числа n  , которые можно представить в виде суммы

n = x+ y+(x,y)+ [x,y]

для некоторых натуральных чисел x  и y.

Здесь (x,y)  и [x,y]  обозначают наибольший общий делитель и наименьшее общее кратное чисел x  и y  соответственно.

Подсказки к задаче

Подсказка 1

Нам хочется что-то понять про число n, поэтому разумно будет попытаться разложить правую часть на множители. С изначальным условием не очень удобно совершать тождественные преобразования. Давайте обозначим НОД(x, y)=d, тогда x=ad, y=bd и как раскладывается правая часть?

Подсказка 2

Верно, n=d(a+1)(b+1)! Как мы понимаем, нам подходят любые d, a и b, удовлетворяющие условию НОД(a, b)=1. При каком b это условие всегда выполнено?

Подсказка 3

Верно, при b=1! Это означает, что любое n вида 2d(a+1) нам подходит. Поэтому появляется предположение о том, что любое четное число, большое 2, нам подойдет. Осталось доказать, что если n раскладывается, то оно обязательно должно быть четным...

Подсказка 4

Так как НОД(a, b)=1, то одновременно a и b делится на 2 не могут. Используйте это и завершите решение!

Показать ответ и решение

Первое решение.

Если оба числа x  и y  одной четности, то все четыре слагаемых x, y, (x, y)  и [x, y]  имеют ту же четность и их сумма четна. Если они имеют разную четность, то (x, y)  нечетно, а [x, y]  четно, потому в сумме будет два четных и два нечетных числа и она снова будет четна. Каждое ее слагаемое не меньше одного, поэтому вся сумма не меньше 4.  Следовательно, ответом задачи может быть только четное число больше двух.

С другой стороны, для произвольного четного n> 2  положив         n
x= 1, y = 2 − 1,  получим (x,y)= x= 1  и          n
[x, y]= y = 2 − 1,  откуда x +y+ (x, y)+[x, y]=n  — представляется в требуемом в условии виде.

Второе решение.

Если обозначить (x, y)= d,  то

x =x1d, y =y1d, [x, y]= x1y1d,

где x1, y1  взаимно просты, значит, одно из них обязательно нечетно. Тогда

n= x+ y+(x, y)+ [x, y]= d(1+ x1)(1+ y1),

где обе скобки не меньше 2  и одна из них обязательно четна. Следовательно, ответом задачи может быть только четное число, большее двух. Далее все как в первом решении.

Ответ: Все чётные числа, большие двух

Ошибка.
Попробуйте повторить позже

Задача 4#97891Максимум баллов за задание: 7

Последовательность чисел a ,n= 1,2,...,12
 n  такова, что

                  an+1+1-
a1 =1,a12 =2,an+2 =  an

для всех натуральных n= 1,2,...10.  Найдите a4.

Подсказки к задаче

Подсказка 1

Что нам дано в условии: есть 12 чисел а₁, ...а₁₂, первое и последнее известны, а также есть 10 соотношений, их связывающие (для n от 1 до 10). По сути есть система из 10 уравнений с 10 неизвестными, и нам обещают, что она разрешима единственным образом. Что самое простое и естественное хочется сделать, когда перед нами куча несложных уравнений с кучей неизвестных?

Подсказка 2

Конечно, для упрощения системы хочется начать выражать неизвестные друг через друга! Зачем нам думать о всех 10 неизвестных, если можно уменьшить их количество?

Подсказка 3

Например, а₃ = (а₂+1)/а₁. То есть а₃ = a₂+1, и а₃ дальше в нашей системе уже фигурировать не будет. Попробуйте так же выразить несколько следующих членов последовательности, может, что-нибудь красивое получится!

Показать ответ и решение

Для краткости обозначим a
 2  за x  и найдём несколько первых членов последовательности при x ⁄=− 1  , что, как мы увидим, будет выполнено:

                       x +2      2x+ 2   2
a1 =1,a2 = x,a3 = x+ 1,a4 =-x-,a5 = x(x+-1) = x,a6 =1,a7 = x

Следовательно, она периодична с периодом 5. В таком случае

a2 = a12 = 2,a3 = 2+-1 =3,a4 = 3+-1= 2
                1          2
Ответ: 2
Рулетка
Вы можете получить скидку в рулетке!