Тема . Росатом - задания по годам

Росатом 2015 и ранее

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом - задания по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49161

Найдите натуральные числа n  , для которых

    (  2    )              ( 2    )
НОК  n,n  +15 ⋅НОК(n,n+ 3)=5 n + 45 .

Источники: Росатом-12, 11.4

Показать ответ и решение

Воспользуемся очевидным неравенством Н ОК(a,b)≥ max{a,b} . Отсюда следует

  2        2                        3   2
5(n  +45)≥(n + 15)⋅(n+ 3) ⇐ ⇒  f(n)= n − 2n + 15n− 180 ≤0

Заметим, что f′(x)= 3x2 − 4x+ 15> 0∀x∈ ℝ  , то есть функция монотонно возрастает. Поскольку при n = 6  имеем f(n)=54> 0  , то n ≤5  . Заметим также, что один из НОК-ов должен делиться на 5  , что не выполняется при n= 1,3,4  , поэтому остаётся перебрать два случая

  • n =2  . Получаем 38⋅5⁄= 5⋅(1+45)  .
  • n =5  . Получаем 40⋅40⁄= 5⋅70  .
Ответ:

решений нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!