Бельчонок до 2020
Ошибка.
Попробуйте повторить позже
Найдите все натуральные числа для каждого из которых существуют такие натуральные числа
и
что
Очевидно, что условию задачи не удовлетворяют.
Непосредственно проверяем, что удовлетворяет условию.
Далее считаем, что .
Если является простым делителем числа
, то
и наоборот: если
— простой делитель числа
, то
. Итак, возьмем общий простой делитель
чисел
и
. Имеем:
где и
— натуральные числа. Тогда
и поэтому . Поскольку число
простое, то
. Мы установили, что
где и
— натуральные числа, причём
. Но из последних двух равенств следует, что
Итак, , что невозможно для
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!