Тема . НадЭн - задания по годам

НадЭн до 2020

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела надэн - задания по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76735

Решите уравнение с тремя неизвестными

 Y    Z
X  + Y = XY Z

в натуральных числах.

Показать ответ и решение

1) Рассмотрим случаи. При Y = 1  получаем уравнение:

X +1 =XZ

откуда X (Z − 1)= 1  , то есть X =1  , Z = 2  .

2) При Y = 2  получаем уравнение:

 2   Z
X + 2 = 2XZ

(X − Z)2+2Z − Z2 =0

При Z =1  решений нет. При подстановке Z = 2,3,4  получаем решения (2;2;2)  , (2;2;3)  , (4;2;3)  , (4;2;4)  . При Z > 4  будет выполнено, что 2Z >Z2  и тогда решений не будет.

Доказать, что 2Z > Z2  легко по индукции. База индукции проверяется подстановкой Z =5  .

Шаг индукции доказывается тем, что если 2Z >Z2,  то

2Z+1 =2Z +2Z >2Z2 >Z2 +2Z +1,

так как Z2− 2Z− 1> 0  при Z > 4  .

3) При Y ≥3  сначала рассмотрим случай X = 1  . Тогда имеем уравнение

    Z
1+Y  = YZ

которое не имеет решений, так как

YZ ≥ YZ− 1Y ≥ 2Z−1Y ≥ YZ

(неравенство 2Z− 1 ≥Z  легко доказать по индукции)

Иначе Y ≥ 3,X ≥ 2  . Тогда

XY = XY −2X2 ≥ 2Y−2X2 ≥ 1X2Y
                      2

(в последнем переходе снова используем неравенство 2Y−1 ≥ Y  )

Y Z = YZ− 1Y ≥ 3Z−1Y > 1Z2Y
                    2

При Z <5  неравенство

3Z−1 > 1Z2
      2

можно проверить вручную, а при Z ≥5  сослаться на доказанное нами неравенство

3Z−1 > 2Z−1 > 1Z2
            2

В итоге, воспользовавшись доказанным и неравенством между средними, получаем:

 Y    Z  1  2   1  2    √-2-2-
X  +Y  > 2X Y + 2YZ  ≥Y  X Z  =XY Z

То есть при Y ≥3,X ≥2  решений нет, так как

 Y    Z
X  + Y > XY Z
Ответ:

 (1;1;2)  , (2;2;2)  , (2;2;3)  , (4;2;3)  , (4;2;4).

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!