Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела закл (финал) 9 класс
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#75241Максимум баллов за задание: 7

При каком наименьшем натуральном n  существуют такие целые a ,a,...,a ,
 1  2    n  что квадратный трехчлен

 2                2     4  4       4
x − 2(a1+ a2 +...+ an)x +(a1+a2+ ...+ an+ 1)

имеет хотя бы один целый корень?

Источники: Всеросс., 2019, ЗЭ, 9.2(см. olympiads.mccme.ru)

Показать ответ и решение

При n= 6  можно положить a =a  =a = a =
1   2   3   4  = 1  и a = a = −1
 5   6  ; тогда трёхчлен из условия принимает вид x2− 8x+ 7  и имеет два целых корня: 1  и 7.  Осталось показать, что это — наименьшее возможное значение n.

Пусть числа a1,a2,...,an  удовлетворяют условию задачи; тогда делённый на 4  дискриминант квадратного трёхчлена из условия должен быть полным квадратом. Он равен

                 4  (               )
d= (a1+ a2+ ...+ an) −  a41 +a42+ ...+ a4n+ 1

Тогда число d  нечётно и является квадратом, поэтому оно даёт остаток 1  при делении на 8.

Перепишем равенство выше в виде

                                   4
d+1 +a41+ a42+...+a4n =(a1+ a2 +...+ an)

и рассмотрим его по модулю 8.  Нетрудно проверить, что четвёртые степени целых чисел дают лишь остатки 0  и 1  при делении на    8,  то есть правая часть равенства даёт остаток 0  или 1.  Левая же часть сравнима с 1+ 1+ k,  где k  — количество нечётных чисел среди ai.  Значит, n≥ k≥ 6.

Ответ:

При n= 6

Ошибка.
Попробуйте повторить позже

Задача 2#94015Максимум баллов за задание: 7

Окружность Ω  с центром в точке O  описана около остроугольного треугольника ABC,  в котором AB <BC;  его высоты пересекаются в точке H.  На продолжении отрезка BO  за точку O  отмечена точка D  такая, что ∠ADC  =∠ABC.  Прямая, проходящая через точку H  параллельно прямой BO,  пересекает меньшую дугу AC  окружности Ω  в точке E.  Докажите, что BH = DE.

Источники: Всеросс., 2019, ЗЭ, 9.3(см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

В четырехугольнике BDEH должны быть равны противоположные стороны, а еще BD||HE, тогда просят доказать, что BDEH - равнобокая трапеция. Представьте, что это правда, что вы можете из этого понять на чертеже?

Подсказка 2

Отметьте вершину диаметрально-противоположную B, середину стороны AC. Рассмотрите симметрию относительно точки M. Найдите какие-нибудь вписанности.

Подсказка 3

Докажите, что AHE’D вписанный четырехугольник. Воспользовавшись этой окружностью и окружностью (ABC), посчитайте углы и докажите, что BDEH - равнобокая трапеция.

Показать доказательство

Пусть P  — вторая точка пересечения BO  с окружностью Ω.  Тогда BP  — диаметр Ω,  и ∠BCP = 90∘ = ∠BAP.  Значит, CP  || AH  и AP || CH.  Следовательно, четырёхугольник AHCP  — параллелограмм. Обозначим через M  точку пересечения его диагоналей. Она является серединой отрезков P H  и AC.

PIC

При симметрии относительно точки M  точка A  переходит в точку C,  а точка P  — в точку H.  Пусть при этой симметрии точка    E  переходит в E′,  а окружность Ω  — в Ω′.  Тогда точки A,H,E ′ и C  лежат на Ω ′.  Поскольку ∠ADC = ∠ABC = 180∘− ∠AHC.  точка D  также лежит на Ω′.

В силу симметрии, ∠ECP  =∠E ′AH,  а также P E′ ∥ HE  — поэтому точка E′ лежит на прямой PB.  Из вписанности четырёхугольников AHE ′D  и BEP C  получаем, что ∠EBP = ∠ECP = ∠E′AH = ∠E′DH.  Таким образом, ∠EBD = ∠BDH.  Это означает, что трапеция BHED  — равнобокая, поэтому BH = DE.

Рулетка
Вы можете получить скидку в рулетке!