Тема . Задачи №24 из банка ФИПИ

.12 №24. Тип 12

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №24 из банка фипи
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#40284

В остроугольном треугольнике ABC  проведены высоты AA1  и CC1.  Докажите, что углы CC1A1  и CAA1  равны.

Источники: Банк ФИПИ, Сборник И.В. Ященко 2024, Вариант 25

Показать доказательство

По условию AA1  и CC1  — высоты остроугольного треугольника ABC.  Тогда

∠CA  A = 90∘ = ∠AC C.
    1            1

Эти углы опираются на отрезок AC,  следовательно, около четырёхугольника ACA1C1  можно описать окружность.

ABCCA11

Тогда ∠CC1A1  =∠CAA1  как вписанные, опирающиеся на одну дугу A1C.

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Доказательство верное, все шаги обоснованы

2

Доказательство в целом верное, но содержит неточности

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!