Тема Задачи №25 из банка ФИПИ

№25. Тип 7

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#42505

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =8,  BC  =7.

Источники: Банк ФИПИ | Сборник И.В. Ященко 2025 г. Вариант 27

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE  = √BC-⋅AD- =√7-⋅8= 2√14.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC-   BC-  7            8
OD  = AD = 8   ⇒   OD = 7OC.

Пусть OC  =x.  Тогда       8
OD =  7x.

По теореме о секущей OD  и касательной OE :

OE2 =OC  ⋅OD  = x⋅ 8x = 8x2
                 7    7
             ∘ 2-
       OE = 2  7x

Рассмотрим треугольники EOH  и DOA.  В них           ∘
∠OHE  = 90 = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-= OE-.
AD   OD

Тогда

                   ∘--
               8 ⋅2 2 x     √ -     √ --
EH  = AD-⋅OE-= -----7--= 8-⋅2√2⋅7 = 2 14.
        OD        87x       8⋅  7
Ответ:

 √ --
2  14

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 2#27825

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD = 8,  BC  =4.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE = √BC--⋅AD-= √8-⋅4= 4√2.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

-OC = BC- = 4= 1   ⇒   OD = 2OC.
OD    AD    8  2

Пусть OC  =x.  Тогда OD = 2x.

По теореме о секущей OD  и касательной OE :

   2                    2
OE  = OC ⋅OD = x ⋅2x = 2x
        OE = √2x

Рассмотрим треугольники EOH  и DOA.  В них ∠OHE  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-  OE-
AD = OD .

Тогда

                 √ -
EH = AD-⋅OE- = 8⋅--2x-= 4√2.
       OD        2x
Ответ:

 √ -
4  2

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 3#43942

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =6,  BC  =5.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE = √BC--⋅AD-= √5-⋅6= √30.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC- = BC-= 5   ⇒   OD = 6OC.
OD    AD   6            5

Пусть OC  =x.  Тогда       6
OD =  5x.

По теореме о секущей OD  и касательной OE :

OE2 =OC  ⋅OD  = x⋅ 6x = 6x2
             ∘-- 5    5
               6
        OE =   5x

Рассмотрим треугольники EOH  и DOA.  В них           ∘
∠OHE  = 90 = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-= OE-.
AD   OD

Тогда

                 ∘ --
               6⋅  6x     √-     √ --
EH = AD-⋅OE- = ----5--= 6⋅-6√-⋅5=   30.
       OD        65x      6⋅  5
Ответ:

√ --
  30

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 4#55905

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =4,  BC  =2.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то           ∘
∠EBC  = 90 = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC    HE          2
HE- = AD-  ⇒   HE  = BC ⋅AD.

Тогда

HE = √BC--⋅AD-= √2-⋅4= 2√2.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

-OC   BC-   2  1
OD  = AD  = 4 = 2  ⇒   OD = 2OC.

Пусть OC  =x.  Тогда OD = 2x.

По теореме о секущей OD  и касательной OE :

   2                    2
OE  = OC ⋅OD = x ⋅2x = 2x
        OE = √2x

Рассмотрим треугольники EOH  и DOA.  В них ∠OHE  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-  OE-
AD = OD .

Тогда

                 √ -
EH = AD-⋅OE- = 4⋅--2x-= 2√2.
       OD        2x
Ответ:

 √ -
2  2

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 5#56384

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =14,  BC  =12.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE = √BC--⋅AD- = √12⋅14= 2√42.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC-  BC-   12   6            7
OD = AD  = 14 = 7  ⇒   OD =  6OC.

Пусть OC  =x.  Тогда       7
OD =  6x.

По теореме о секущей OD  и касательной OE :

OE2 =OC  ⋅OD  = x⋅ 7x = 7x2
                 6    6
             ∘-7
        OE =   6x

Рассмотрим треугольники EOH  и DOA.  В них           ∘
∠OHE  = 90 = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-= OE-.
AD   OD

Тогда

                   ∘--
               14 ⋅ 7 x     √ -     √ --
EH  = AD-⋅OE-= -----6--= 14-⋅√7⋅6 = 2 42.
        OD        76x       7⋅  6
Ответ:

 √ --
2  42

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 6#105356

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =20,  BC  =10.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то           ∘
∠EBC  = 90 = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC    HE          2
HE- = AD-  ⇒   HE  = BC ⋅AD.

Тогда

HE = √BC--⋅AD- = √10⋅20= 10√2.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC- = BC-= 10 = 1  ⇒   OD  = 2OC.
OD    AD   20   2

Пусть OC  =x.  Тогда OD = 2x.

По теореме о секущей OD  и касательной OE :

   2                    2
OE  = OC ⋅OD = x ⋅2x = 2x
        OE = √2x

Рассмотрим треугольники EOH  и DOA.  В них ∠OHE  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-  OE-
AD = OD .

Тогда

                  √ -
EH = AD--⋅OE- = 20⋅--2x-= 10√2.
       OD        2x
Ответ:

  √-
10 2

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 7#105357

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =12,  BC  =9.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE  = √BC-⋅AD- =√9-⋅12= 6√3.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC-= BC- = -9 = 3  ⇒   OD =  4OC.
OD   AD    12   4            3

Пусть OC  =x.  Тогда       4
OD =  3x.

По теореме о секущей OD  и касательной OE :

OE2 =OC  ⋅OD  = x⋅ 4x = 4x2
                 3    3
        OE = √2-x
               3

Рассмотрим треугольники EOH  и DOA.  В них ∠OHE  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-= OE-.
AD   OD

Тогда

                   2
     AD ⋅OE    12⋅√--x  12 ⋅2 ⋅3   √-
EH = --OD--- = --4--3-= ---√---= 6 3.
                 3x      4⋅  3
Ответ:

 √ -
6  3

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 8#105358

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =12,  BC  =10.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE = √BC--⋅AD- = √10⋅12= 2√30.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC-= BC- = 10 = 5  ⇒   OD =  6OC.
OD   AD    12   6            5

Пусть OC  =x.  Тогда       6
OD =  5x.

По теореме о секущей OD  и касательной OE :

OE2 =OC  ⋅OD  = x⋅ 6x = 6x2
             √ - 5    5
             --6
        OE = √5-x

Рассмотрим треугольники EOH  и DOA.  В них           ∘
∠OHE  = 90 = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-= OE-.
AD   OD

Тогда

                   √-
                12 ⋅√6x      √ ----  √ --
EH  = AD-⋅OE- = ----5--= 12⋅--5⋅6 =2  30.
        OD        6x         6
                  5
Ответ:

 √ --
2  30

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 9#105359

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =20,  BC  =15.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то ∠EBC  = 90∘ = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC- = HE-  ⇒   HE2 = BC ⋅AD.
HE    AD

Тогда

HE = √BC--⋅AD- = √15⋅20= 10√3.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC-= BC- = 15 = 3  ⇒   OD =  4OC.
OD   AD    20   4            3

Пусть OC  =x.  Тогда       4
OD =  3x.

По теореме о секущей OD  и касательной OE :

OE2 =OC  ⋅OD  = x⋅ 4x = 4x2
                 3    3
        OE = √2-x
               3

Рассмотрим треугольники EOH  и DOA.  В них ∠OHE  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-= OE-.
AD   OD

Тогда

                   2
      AD ⋅OE   20 ⋅√-x   20⋅2⋅3    √ -
EH  = --OD---= ---4-3- = ---√---= 10 3.
                  3x      4⋅ 3
Ответ:

  √-
10 3

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Ошибка.
Попробуйте повторить позже

Задача 10#105360

В трапеции ABCD  боковая сторона AB  перпендикулярна основанию BC.  Окружность проходит через точки C  и D  и касается прямой AB  в точке E.  Найдите расстояние от точки E  до прямой CD,  если AD  =14,  BC  =7.

Источники: Банк ФИПИ

Показать ответ и решение

Способ 1.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

ABCDEH

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Проведем отрезки EC  и ED.

∠ECD  — вписанный и опирается на дугу DE,  ∠AED  — угол между касательной EA  и хордой DE,  следовательно, по теореме о угле между касательной и хордой ∠ECD  =∠AED.

Так как EH  ⊥CD,  AE ⊥ AD,  то

∠EAD  = 90∘ = ∠EHC.

Тогда △ AED ∼ △HCE  по двум углам. Запишем отношение подобия:

HE-= CE-.
AD   ED

∠CDE  — вписанный и опирается на дугу EC,  ∠BEC  — угол между касательной EB  и хордой EC,  следовательно, по теореме о угле между касательной и хордой ∠CDE  =∠BEC.

Так как EH  ⊥CD,  BE ⊥ BC,  то           ∘
∠EBC  = 90 = ∠EHD.

Тогда △ BEC ∼ △HDE  по двум углам. Запишем отношение подобия:

CE-= BC-.
ED   HE

По доказанному ранее:

BC    HE          2
HE- = AD-  ⇒   HE  = BC ⋅AD.

Тогда

HE  = √BC-⋅AD- =√7-⋅14= 7√2.

 

Способ 2.

Проведём отрезок EH  ⊥CD.  Тогда EH  — искомое расстояние.

Продлим стороны AB  и DC  до пересечения в точке O.

ABDEHOCx

 

Так как AB ⊥ BC,  то ABCD  — прямоугольная трапеция. Следовательно, AB ⊥ AD.

Рассмотрим треугольники BOC  и AOD.  В них ∠OBC  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники BOC  и AOD  подобны по двум углам. Запишем отношение подобия:

OC- = BC-= -7 = 1  ⇒   OD  = 2OC.
OD    AD   14   2

Пусть OC  =x.  Тогда OD = 2x.

По теореме о секущей OD  и касательной OE :

   2                    2
OE  = OC ⋅OD = x ⋅2x = 2x
        OE = √2x

Рассмотрим треугольники EOH  и DOA.  В них ∠OHE  = 90∘ = ∠OAD,  ∠O  — общий. Поэтому треугольники EOH  и DOA  подобны по двум углам. Запишем отношение подобия:

EH-  OE-
AD = OD .

Тогда

                  √ -
EH  = AD-⋅OE-= 14-⋅-2x =7√2.
        OD        2x
Ответ:

 √ -
7  2

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Ход решения верный, получен верный ответ

2

Ход решения верный, все его шаги присутствуют, но допущена арифметическая ошибка

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2
Рулетка
Вы можете получить скидку в рулетке!