Тема 12. Исследование функций с помощью производной

12.07 Поиск наибольшего/наименьшего значения у элементарных функций

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела исследование функций с помощью производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#2062

Найдите наибольшее значение функции y = − 2x2 + 1  на отрезке [− 5; 5]  .

Показать ответ и решение

ОДЗ: x  – произвольный.

1)

y′ = − 4x

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна 0  или не существует):

− 4x = 0     ⇔      x =  0.
Производная существует при любом x  .

2) Найдём промежутки знакопостоянства y′ :
 
PIC

 

3) Найдём промежутки знакопостоянства  ′
y на рассматриваемом отрезке [− 5;5]  :
 
PIC

 

4) Эскиз графика на отрезке [− 5;5]  :
 
PIC

 

Таким образом, наибольшего на [− 5;5]  значения функция достигает в x = 0  .

y(0) = 1.
Итого: 1  – наибольшее значение функции y  на [− 5;5 ]  .
Ответ: 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!