Тема 12. Исследование функций с помощью производной

12.01 Поиск точек экстремума у элементарных функций

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела исследование функций с помощью производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#16753

Найдите точку минимума функции  y = 2x− ln(x− 3)+ 5.

Показать ответ и решение

Заметим, что данная функция определена при x> 3,  поэтому далее будем рассматривать ее на промежутке (3;+∞ ).

Найдем критические точки заданной функции

f(x) =2x − ln(x− 3)+5

Для этого вычислим её производную:

f′(x)= (2x)′− (ln(x − 3))′+5′ =
          1       2x − 7
   = 2 − x−-3 + 0=-x−-3

Далее найдем нули производной:

f′(x)= 0  ⇒   2x−-7 = 0
              x− 3
2x − 7 = 0 ⇒   x= 3,5

Единственная критическая точка — это x= 3,5,  в этой точке производная меняет знак. Для того чтобы определить, является ли x= 3,5  точкой минимума, нужно определить знаки производной при x< 3,5  и x> 3,5.

Если x > 3,5,  то f′(x)> 0,  если x < 3,5,  то f′(x)< 0.  Значит, точка x= 3,5  является точкой минимума, так как в ней производная меняет знак с «− » на «+  » при проходе слева направо.

Ответ: 3,5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!