Тема . Задачи №13 из ЕГЭ прошлых лет

.00 №13 из ЕГЭ 2025

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №13 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#120317

a) Решите уравнение log5(cosx+ sin2x +25)= 2.

б) Найдите все корни этого уравнения, принадлежащие отрезку [     ]
 2π; 7π .
    2

Источники: ЕГЭ 2025, резервный день досрочной волны

Показать ответ и решение

а) Избавимся от логарифма и сведем уравнение к простейшим тригонометрическим:

log (cosx+ sin2x + 25)= 2
  5
  cosx+ sin2x +25 = 52
cosx+ 2sinx cosx +25 = 25
   cosx(1+ 2sinx) =0
      ⌊
      ⌈cosx= 0
       sin x= − 1
               2
  ⌊x= π-+ πk, k ∈ ℤ
  ||   2
  ||x= − π+ 2πk, k ∈ℤ
  |⌈     6
   x= − 5π+ 2πk, k ∈ ℤ
        6

Отберем корни на тригонометрической окружности. Для этого отметим на ней дугу, соответствующую отрезку [     ]
 2π; 7π ,
    2  концы этой дуги и лежащие на ней точки серий решений из пункта а).

7517ππ9ππ
2π2262

Следовательно, на отрезке [   7π]
 2π;-2 лежат точки 5π
-2 ;  19π
-6-;  7π
-2 .

Ответ:

а) π+ πk;
2  − π+ 2πk;
  6  − 5π+ 2πk,
  6  k ∈ℤ

б) 5π;
 2  19π;
 6  7π
 2

Критерии оценки

Содержание критерия

Балл

Обоснованно получены верные ответы в обоих пунктах

2

Обоснованно получен верный ответ в пункте а)

1

ИЛИ

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта а) и пункта б)

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!