Тема . Задачи №13 из ЕГЭ прошлых лет

.00 №13 из ЕГЭ 2025

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №13 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#125846

а) Решите уравнение    (       )
sin  −2x+ π- − sin(4π − x)= 0.
         2

б) Найдите все корни этого уравнения, принадлежащие отрезку [ 7π    ]
 −-2 ;− 2π .

Источники: ЕГЭ 2025,основная волна 26.05, Центр

Показать ответ и решение

а) По формуле приведения и формуле синуса двойного угла получаем:

   (     π-)               2
sin −2x+  2 = cos2x= 1− 2sin  x.

По формуле приведения:

sin(4π − x)= sin(−x)= − sinx.

Сделаем полученные замены:

1− 2sin2x − (− sinx) =0
  1− 2sin2x+ sin x= 0
(1− sinx)(2sinx + 1) =0
 [
  1− sinx = 0
  2sinx + 1= 0
 ⌊sinx = 1
 ⌈       1
  sinx = −2
 ⌊   π-
 |x=  2 + 2πk, k ∈ ℤ
 ||x= − π-+2πk, k ∈ℤ
 ||⌈     6
  x= − 5π+ 2πk, k ∈ℤ
       6

б) Отберем корни на тригонометрической окружности. Для этого отметим на ней дугу, соответствующую отрезку [  7π    ]
 − 2 ;−2π ,  концы этой дуги и лежащие на ней точки серий решений из пункта а).

−−−− 2711ππ37ππ
   266

Следовательно, на отрезке [        ]
 − 7π;−2π
    2 лежат точки − 7π;
   2  − 17π;
   6  − 13π-.
   6

Ответ:

a) π+ 2πk;
2  − π+ 2πk;
  6  − 5π+ 2πk,
  6  k ∈ℤ

 

б) − 7π ;
   2  − 17π;
   6  − 13π
   6

Критерии оценки

Содержание критерия

Балл

Обоснованно получены верные ответы в обоих пунктах

2

Обоснованно получен верный ответ в пункте а)

1

ИЛИ

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта а) и пункта б)

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!