.00 №13 из ЕГЭ 2025
Ошибка.
Попробуйте повторить позже
а) Решите уравнение
б) Найдите все корни этого уравнения, принадлежащие отрезку
Источники:
а) По формулам приведения:
Из основного тригонометрического тождества:
С учетом этого имеем:
Сделаем замену тогда уравнение примет вид
Найдем дискриминант:
Тогда корни квадратного уравнения равны
Так как то корень
не подходит. Следовательно,
сделав обратную замену, получим
б) Отберем корни на тригонометрической окружности. Для этого отметим на
ней дугу, соответствующую отрезку концы этой дуги и лежащие на
ней точки серий решений из пункта а).
Следовательно, на отрезке лежит точка
a)
б)
Содержание критерия | Балл |
Обоснованно получены верные ответы в обоих пунктах | 2 |
Обоснованно получен верный ответ в пункте а) | 1 |
ИЛИ | |
получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта а) и пункта б) | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!