8.03 Производная в точке касания как тангенс угла наклона касательной
Ошибка.
Попробуйте повторить позже
На рисунке изображен график функции и отмечены точки
В какой из этих точек значение производной
наибольшее? В ответе укажите эту точку.
Проведем касательные к графику функции в этих точках. Так как тангенс угла наклона касательной равен значению
производной
в точке касания
то есть
то нужно сравнить тангенсы углов, отмеченных на
рисунке.
Вспомним, что если угол тупой, то его тангенс отрицательный, если острый — положительный. Следовательно, так как мы ищем наибольший тангенс, то имеет смысл рассматривать только острые углы. Это углы, образованные касательными в точках 0 и 2.
Заметим, что угол в точке 0 больше, следовательно, его тангенс также больше, чем тангенс угла в точке 2. Таким образом, ответ: 0.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!