Тема . №25 Электродинамика (Расчетная задача высокого уровня сложности)

.10 Колебательный контур. Переменный ток

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №25 электродинамика (расчетная задача высокого уровня сложности)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#59631

В колебательном контуре, активное сопротивление которого равно нулю, происходят свободные электромагнитные колебания с периодом T = 50,24  мкс и максимальным напряжением на конденсаторе Umax  . Зависимость энергии электрического поля конденсатора от разности потенциалов между его обкладками в пределах от 0 до Umax  приведена на графике. Определите максимальное значение силы тока в контуре.

PIC

Показать ответ и решение

Максимальная энергия конденсатора равна E эл.макс. = 0,8  мДж, а максимальное напряжение на обкладках конденсатора Umax = 200  В.
Запишем формулу Томсона:

     √ ---
T =2π  LC,

где T  – период колебаний, L  – индуктивность катушки, C  – ёмкость конденсатора.
Выразим индуктивность катушки

      2
L=  -T--- (1)
    4π2C

Так как энергия в процессе колебаний сохраняется, то можно записать закон сохранения энергии

CU2max-  LI2max
  2   =   2  ,  (2)

где Imax  – максимальная сила тока в катушке.
Подставим (1) в (2)

   2      2
CUmax-= -T2-I2max  (3)
  2     4π C

При этом максимальная энергия конденсатора равна

E эл.макс. = CU2max ⇒ C = 2Eэл.макс. (4)
            2          U2max

Объединим (3) и (4)

      4πEэл.макс.  4⋅3,14⋅0,8⋅10−3 Дж
Imax = -T-Umax--= -50,24⋅10−6⋅200 В- =1 А
Ответ:
Критерии оценки

Критерии оценивания выполнения задачи

Баллы

Приведено полное решение, включающее следующие элементы:

3

I) записаны положения теории и физические законы,

закономерности, применение которых необходимо для решения

задачи выбранным способом (в данном случае: закон сохранения нергеии в электрической цепи, формула энергии электрического поля конденсатора, формула магнитного поля катушки индуктивности, формула Томсона);

II) описаны все вновь вводимые в решении буквенные обозначения

физических величин (за исключением обозначений констант,

указанных в варианте КИМ, обозначений, используемых в условии

задачи, и стандартных обозначений величин, используемых при

написании физических законов);

III) представлены необходимые математические преобразования и

расчёты, приводящие к правильному числовому ответу

(допускается решение «по частям» с промежуточными

вычислениями);

IV) представлен правильный ответ с указанием единиц измерения

искомой величины

Правильно записаны все необходимые положения теории,

2

физические законы, закономерности, и проведены необходимые

преобразования, но имеется один или несколько из следующих

недостатков

Записи, соответствующие пункту II, представлены не в полном

объёме или отсутствуют.

И (ИЛИ)

В решении лишние записи, не входящие в решение (возможно,

неверные), не отделены от решения (не зачёркнуты; не заключены

в скобки, рамку и т.п.).

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях

допущены ошибки, и (или) преобразования/вычисления не

доведены до конца.

И (ИЛИ)

Отсутствует пункт IV, или в нём допущена ошибка

Представлены записи, соответствующие одному из следующих

1

случаев.

Представлены только положения и формулы, выражающие

физические законы, применение которых необходимо для решения

задачи, без каких-либо преобразований с их использованием,

направленных на решение задачи, и ответа.

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая

для решения задачи (или утверждение, лежащее в основе решения),

но присутствуют логически верные преобразования с имеющимися

формулами, направленные на решение задачи.

ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения задачи

(или в утверждении, лежащем в основе решения), допущена

ошибка, но присутствуют логически верные преобразования с

имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным

0

критериям выставления оценок в 1, 2, 3 балла

Максимальный балл

3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!