Тема 19. Задачи на теорию чисел

19.10 Последняя цифра числа

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи на теорию чисел
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#2010

Найдите последнюю цифру числа, равного 0!+ 1!+ 2!+ 3!+ ⋅⋅⋅+ 2017!,  если по определению 0!= 1.

Показать ответ и решение

Последняя цифра суммы равна последней цифре суммы последних цифр исходных слагаемых.

Так как при n≥ 5  последняя цифра числа n!  равна 0, то все числа вида n!  при n≥ 5  не дадут вклада в последнюю цифру исходной суммы.

Таким образом, последняя цифра исходной суммы совпадает с последней цифрой суммы

0!+ 1!+ 2!+ 3!+4!,

которая равна последней цифре суммы последних цифр её слагаемых, то есть последней цифре числа

1 +1 +2 +6 +4 = 14,

которой является цифра 4.

Ответ: 4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!