Тема 17. Задачи по планиметрии

17.05 Признаки подобия треугольников

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи по планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#135445

Укажите подобные треугольники, докажите их подобие.

PIC

Показать ответ и решение

Решение

Заметим, что ∠MP  E  и ∠P EC  являются накрест лежащими при прямых MP  и AE  и секущей EP.  Более того, они равны, а значит, MP  ∥AE.  Следовательно, ∠BMP   = ∠BAC  как соответственные углы при MP  ∥AE  и секущей AB.

А также ∠MBP  является общим для △ MBP  и △ ABC.

Значит, △ MBP  ∼ △ABC  по двум углам.

По условию дано, что ∠BAC  = ∠PEC.  А также ∠PCE  является общим для △ PCE  и △ BCA.

Следовательно, △ ABC  ∼ △EP C  по двум углам.

PIC

Таким образом, получаем, что △ MBP  ∼ △ABC  ∼ EPC.

Ответ:

△ MBP  ∼ △ABC  ∼ EPC

Критерии оценки

Содержание критерия

Балл

Имеется верное доказательство утверждения пункта а), и обоснованно получен верный ответ в пункте б)

3

Обоснованно получен верный ответ в пункте б)

2

ИЛИ

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

Имеется верное доказательство утверждения пункта а),

1

ИЛИ

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

ИЛИ

обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!