Тема №16. Окружности

04 Вписанные окружности

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №16. окружности
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 21#57248Максимум баллов за задание: 1

Радиус окружности, вписанной в равносторонний треугольник, равен 6. Найдите высоту этого треугольника.

PIC

Показать ответ и решение

Центр вписанной окружности — точка пересечения биссектрис.

Так как треугольник равносторонний, то каждая биссектриса являeтся медианой и высотой. Значит, точка пересечения биссектрис в равностороннем треугольнике — точка пересечения медиан и высот.

Обозначим точку пересечения биссектрис, медиан и высот за O, AH  — высота, биссектриса и медиана.

PIC

По свойству медиан треугольника медианы точкой пересечения делятся в отношении 2:1,  считая от вершины. Значит,

AO    2
OH- = 1

OH  — радиус, поэтому OH  = r,  AO = 2OH = 2r.

Найдем AH :

AH  = AO +OH  = 2r+ r = 3r = 3⋅6= 18
Ответ: 18

Ошибка.
Попробуйте повторить позже

Задача 22#48491Максимум баллов за задание: 1

Радиус окружности, описанной около квадрата, равен   √-
42 2.  Найдите радиус окружности, вписанной в этот квадрат.

PIC

Показать ответ и решение

PIC

Пусть ABCD  — квадрат. ∠ADC  — вписанный и равен 90∘.  Тогда AC  — диаметр. По условию радиус окружности, описанной около квадрата, равен   √ -
42  2.  Значит,

AC = 2 ⋅42√2-= 84√2

Рассмотрим треугольник ACD.  Пусть AD = x.  Так как все стороны квадрата равны, то CD = AD = x.  По теореме Пифагора

AC2 = CD2 + AD2 = x2+ x2 = 2x2 ⇒
           ∘ ----  ∘ (--√-)-
             AC2-    -84-2-2
    ⇒   x=     2 =      2    =84

Докажем, что радиус вписанной в квадрат окружности равен половине его стороны.

Пусть точка O  — центр вписанной в квадрат окружности, точка K  — точка касания окружности со стороной BC,  точка L  — точка касания окружности со стороной AD.  Так как касательная перпендикулярна радиусу, проведённому в точку касания, то OK  ⊥ BC, OL ⊥ AD.  BC ∥AD,  значит, OK ⊥ AD.  Две прямые, перпендикулярные третьей, параллельны, тогда точки K, O, L  лежат на одной прямой.

CD ⊥ AD, KL  ⊥ AD,  значит, KL ∥ CD.  Тогда KCDL  — параллелограмм. В параллелограмме противоположные стороны равны, поэтому KL  = CD.  OK  = OL  как радиусы, значит,

OK  =OL =  CD-= 84 = 42
            2    2
Ответ: 42

Ошибка.
Попробуйте повторить позже

Задача 23#42451Максимум баллов за задание: 1

Радиус вписанной в квадрат окружности равен  √ -
7  2.  Найдите радиус окружности, описанной около этого квадрата.

PIC

Показать ответ и решение

Пусть     √-
r = 7 2.  Требуется найти R.

Знаем, что r  равен половине стороны квадрата, следовательно, сторона квадрата равна   √ -
14  2.

Радиус R  описанной около квадрата окружности равен половине диагонали квадрата и, так как диагональ квадрата равна стороне квадрата, умноженной на √ -
  2,  имеем

      (       )
R = 1  14√2-⋅√2- = 14.
    2
Ответ: 14
Рулетка
Вы можете получить скидку в рулетке!