Тема №17. Четырёхугольники

02 Свойства параллелограмма

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №17. четырёхугольники
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#122873Максимум баллов за задание: 1

Один из углов параллелограмма равен 74∘.  Найдите больший угол этого параллелограмма. Ответ дайте в градусах.

Источники: Банк ФИПИ

Показать ответ и решение

  ∘
ABCD7?4

Пусть ABCD  — параллелограмм, ∠A = 74∘.  Так как ABCD  — параллелограмм, то противоположные углы равны.

Сумма односторонних углов параллелограмма равна 180∘.

∠A +∠B = 180∘

Найдем величину большего угла:

∠B = 180∘− ∠A
∠B = 180∘− 74∘
          ∘
  ∠B = 106
Ответ: 106

Ошибка.
Попробуйте повторить позже

Задача 2#122874Максимум баллов за задание: 1

Один из углов параллелограмма равен 91∘.  Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.

Источники: Банк ФИПИ

Показать ответ и решение

  ∘
ABCD?91

Пусть ABCD  — параллелограмм, ∠B = 91∘.  Так как ABCD  — параллелограмм, то противоположные углы равны.

Сумма односторонних углов параллелограмма равна 180∘.

∠A +∠B = 180∘

Найдем величину меньшего угла:

∠A =180∘− ∠B
∠A = 180∘− 91∘
         ∘
  ∠A = 89
Ответ: 89

Ошибка.
Попробуйте повторить позже

Задача 3#122879Максимум баллов за задание: 1

Диагональ AC  параллелограмма ABCD  образует с его сторонами углы, равные 40∘ и 35∘.  Найдите больший угол этого параллелограмма. Ответ дайте в градусах.

ABCD3450∘∘

Источники: Банк ФИПИ

Показать ответ и решение

  ∘∘
ABCD34?50

Так как ABCD  — параллелограмм, то противоположные углы равны.

Угол BAD  параллелограмма равен:

∠BAD  = 40∘ +35∘ =75∘.

Сумма односторонних углов параллелограмма равна   ∘
180 .

∠BAD  +∠ABC  = 180∘

Найдем величину большего угла:

          ∘
∠ABC  =180 − ∠BAD
 ∠ABC  = 180∘− 75∘
    ∠ABC = 105∘
Ответ: 105

Ошибка.
Попробуйте повторить позже

Задача 4#77260Максимум баллов за задание: 1

Диагональ BD  параллелограмма ABCD  образует с его сторонами углы, равные 65∘ и 50∘.  Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.

ABCD5605∘∘

Источники: Банк ФИПИ

Показать ответ и решение

  ∘∘
ABCD56?05

Так как ABCD  — параллелограмм, то противоположные углы равны.

Угол ABC  параллелограмма равен:

∠ABC  = 65∘+ 50∘ = 115∘.

Сумма односторонних углов параллелограмма равна 180∘.

∠BAD  +∠ABC  = 180∘

Найдем величину меньшего угла:

          ∘
∠BAD  = 180 − ∠ABC
 ∠BAD  = 180∘− 115∘
    ∠BAD  = 65∘
Ответ: 65

Ошибка.
Попробуйте повторить позже

Задача 5#122875Максимум баллов за задание: 1

Диагональ BD  параллелограмма ABCD  образует с его сторонами углы, равные 65∘ и 80∘.  Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.

ABCD8605∘∘

Источники: Банк ФИПИ

Показать ответ и решение

  ∘∘
ABCD86?05

Так как ABCD  — параллелограмм, то противоположные углы равны.

Угол ABC  параллелограмма равен:

∠ABC  = 65∘+ 80∘ = 145∘.

Сумма односторонних углов параллелограмма равна 180∘.

∠BAD  +∠ABC  = 180∘

Найдем величину меньшего угла:

          ∘
∠BAD  = 180 − ∠ABC
 ∠BAD  = 180∘− 145∘
    ∠BAD  = 35∘
Ответ: 35

Ошибка.
Попробуйте повторить позже

Задача 6#104811Максимум баллов за задание: 1

Диагонали AC  и BD  параллелограмма ABCD  пересекаются в точке O,  AC = 12,  BD  = 20,  AB = 7.  Найдите DO.

ABCDO

Источники: Банк ФИПИ

Показать ответ и решение

ABCDO

В параллелограмме диагонали точкой пересечения делятся пополам, то есть:

          1
BO = DO = 2 BD

Тогда имеем:

DO = 1BD  = 1⋅20= 10.
     2      2
Ответ: 10

Ошибка.
Попробуйте повторить позже

Задача 7#45338Максимум баллов за задание: 1

Найдите острый угол параллелограмма ABCD,  если биссектриса угла A  образует со стороной BC  угол, равный 21∘.  Ответ дайте в градусах.

ABCD

Источники: Банк ФИПИ

Показать ответ и решение

ABCDL21∘

Пусть биссектриса пересекает сторону BC  в точке L.  По условию ∠ALB  = 21∘.  Так как ABCD  — параллелограмм, то прямые BC  и AD  параллельны, а значит,

                 ∘
∠LAD  = ∠BLA  =21

как накрест лежащие при параллельных прямых BC  и AD  и секущей AL.

Так как AL  — биссектриса, то искомый угол равен:

∠BAD  = 2∠LAD = 2 ⋅21∘ = 42∘.
Ответ: 42

Ошибка.
Попробуйте повторить позже

Задача 8#99074Максимум баллов за задание: 1

Найдите тупой угол параллелограмма ABCD,  если биссектриса угла A  образует со стороной BC  угол, равный 38∘.  Ответ дайте в градусах.

ABCD

Источники: Сборник И.В. Ященко 2024 г. Вариант 5

Показать ответ и решение

Пусть точка X  — пересечение биссектрисы угла A  и стороны BC.

PIC

Так как прямые BC  и AD  параллельны, а углы ∠DAX  и ∠BCX  — накрест лежащие при этих прямых,

38∘ = ∠DAX = ∠BXA  = ∠BAX.

Тогда

          ∘                    ∘    ∘    ∘     ∘    ∘    ∘
∠ABC  =180 = ∠BAX  − ∠BXA  = 180 − 38 − 38 = 180 − 76 = 104 .

Это и есть тупой угол параллелограмма ABCD.

Ответ: 104

Ошибка.
Попробуйте повторить позже

Задача 9#122880Максимум баллов за задание: 1

Найдите острый угол параллелограмма ABCD,  если биссектриса угла A  образует со стороной BC  угол, равный 33∘.  Ответ дайте в градусах.

ABCD

Источники: Банк ФИПИ

Показать ответ и решение

  ∘
ABCDL33

Пусть биссектриса пересекает сторону BC  в точке L.  По условию ∠ALB  = 33∘.  Так как ABCD  — параллелограмм, то прямые BC  и AD  параллельны, а значит,

∠LAD  = ∠BLA  =33∘

как накрест лежащие при параллельных прямых BC  и AD  и секущей AL.

Так как AL  — биссектриса, то искомый угол равен:

∠BAD  = 2∠LAD = 2 ⋅33∘ = 66∘.
Ответ: 66

Ошибка.
Попробуйте повторить позже

Задача 10#104813Максимум баллов за задание: 1

В параллелограмме ABCD  известен ∠B  =150∘ и на стороне BC  выбрана точка N  такая, что AB = BN.  Найдите ∠NAD.  Ответ дайте в градусах.

PIC

Показать ответ и решение

В равнобедренном треугольнике ABN  углы при основании равны, тогда

∠BAN  = ∠BNA  = 1(180∘− 150∘)= 15∘
                2

Поскольку накрест лежащие углы при параллельных прямых AD  и BC  и секущей AN  равны, то

∠NAD  = ∠BNA  = 15∘
Ответ: 15

Ошибка.
Попробуйте повторить позже

Задача 11#104814Максимум баллов за задание: 1

Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 6. Найдите его большую сторону.

PIC

Показать ответ и решение

По условию ∠ABE  = ∠EBC.  Противоположные стороны параллелограмма BC  ∥AD,  следовательно, ∠EBC = ∠BEA.  Тогда в треугольнике AEB  углы B  и E  равны, значит, он равнобедренный, то есть

AB = AE = 6.

PIC

Из полностью аналогичных соображений

DE = DC = 6.

Тогда большая сторона параллелограмма равна

AD = AE + DE = 12.
Ответ: 12

Ошибка.
Попробуйте повторить позже

Задача 12#107205Максимум баллов за задание: 1

Один угол параллелограмма больше другого на 70∘.  Найдите больший угол параллелограмма. Ответ дайте в градусах.

PIC

Показать ответ и решение

В параллелограмме противоположные углы равны, а прилежащие к одной стороне в сумме дают 180∘.  Следовательно, пусть x  — некоторый угол параллелограмма, тогда второй равен x + 70∘.  Так как они не могут быть противоположными, то они прилежащие к одной стороне, значит,

x+ x+ 70∘ = 180∘ ⇒   x= 55∘

Тогда больший угол параллелограмма равен

x + 70∘ =125∘
Ответ: 125
Рулетка
Вы можете получить скидку в рулетке!