Тема . Десятичная запись и цифры

Уравнения с десятичной записью

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела десятичная запись и цифры
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#72755

Если взять три разные цифры, составить из них все шесть возможных двузначных чисел, записанных двумя разными цифрами, и сложить эти числа, то получится 462.  Найдите эти цифры. Приведите все варианты и докажите, что других нет. В качестве ответа введите в порядке возрастания через пробел все возможные значения наименьшей цифры в тройке.

Источники: Муницип - 2022, Ленинградская область, 8.2

Подсказки к задаче

Подсказка 1

Предположим, что наши три цифры - a, b, c. Как можно выразить сумму всех наших двузначных чисел?

Подсказка 2

Как 20(a+b+c)+2(a+b+c) = 22(a+b+c)! Откуда a+b+c = 462/22 = 21. Осталось найти все наборы различных цифр, у которых сумма = 21)

Показать ответ и решение

Обозначим три различные цифры как a, b, c.  Всевозможные двузначные числа: ab, ba, ac, ca, bc, cb.

По условию

(10a +b)+ (10a+ c)+ (10b+ c)+(10c+ b)+(10c+a)+ (10b+ a)=462

Приведем общие слагаемые

a +b+ c= 21

То есть b+c= 21− a.  Так как это различные цифры, b+c≤ 8+ 9= 17.  Следовательно 21− a≤17.  Переберем возможные значения a ≥4

Если a= 4,  то b+c =17.  Это возможно только в случае b =8, c =9  и наоборот.

Если a= 5,  то b+c =16.  Это возможно только в случае b =9, c =7  и наоборот.

Если a= 6,  то b+c =15.  Это возможно только в случае b =7, c =8  и наоборот.

В случаях, когда a= 7, a= 8  или a= 9  перебирая всевозможные подходящие пары цифр (b,c)  получаем уже найденные ранее тройки.

Ответ: 4 5 6

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!