Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68075

Решить уравнение

(  4    )(  4     )     2     2
 sin 5x+ 1 sin 3x+ 1 = 4sin 5x⋅sin 3x.

Источники: Росатом-2023, 11.2, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Мы видим, что относительно замены a=sin^2(5x), и b=sin^2(3x) уравнение симметрично. Попробуйте оценить каждую из скобок снизу по отдельности и подумать, что это дает(размышления про симметрию нужны, так как, вероятно, нужно как-то по одному алгоритму оценивать каждую из скобок).

Подсказка 2

Верно, мы можем оценить, что первая скобка - это хотя бы 2sin^2(5x), а вторая - хотя бы 2sin^2(3x) (так как t^2+1>=2t - по неравенству о средних или просто можно перенести в левую часть все). Значит, левая часть почти всегда больше или равна правой. Что это дает нам? Какая система из этого следует?

Подсказка 3

Действительно, у нас выходит, что sin^2(3x)=sin^2(5x)=1 А это значит, что |sin(3x)|=1=|sin(5x)|. Остается решить эту систему и получить ответ.

Показать ответ и решение

Выполним равносильные преобразования в исходном уравнении:

  4     4     4      4          2     2
sin 5x ⋅sin 3x +sin 5x+ sin 3x+ 1− 4sin 5x⋅sin 3x = 0

(sin45x⋅sin43x− 2sin25x⋅sin23x+ 1)+ (sin45x − 2sin25x ⋅sin23x +sin43x)= 0

(sin25x⋅sin23x− 1)2+ (sin25x − sin23x)2 = 0

Сумма неотрицательных слагаемых равна нулю тогда и только тогда, когда каждое слагаемое равно нулю. Тогда

(
{sin25x⋅sin23x− 1= 0
(sin25x− sin23x= 0

Учитывая ограниченность синуса, имеем

(             (     π       (    π   πn
{ |sin5x|=1    |{ 5x= 2 +πn   |{ x= 10 +-5 ,n ∈ℤ
( |sin3x|=1  ⇔ |( 3x= π +πm ⇔ |( x= π + πm-,m ∈ℤ
                    2            6   3

Далее находим пересечение серий

                             ({
π-+ πn = π+ πm-⇔ 3n− 5m =1 ⇔  n =2 +5k ,k ∈ℤ
10   5   6   3               (m = 1+3k

Окончательно получаем    π
x= 2 + πk,k ∈ℤ

Ответ:

 π + πk,k ∈ℤ
 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!