Оценки в тригонометрии
Ошибка.
Попробуйте повторить позже
Решите уравнение
Первое решение. Распишем косинус двойного угла
Получаем уравнения вида , где
Исследуем функцию
Вторая производная положительна при любом , следовательно первая производная — монотонно возрастающая функция. Тогда имеет не больше одного решения. Точка подходит. Также заметим, что при и при . А значит возрастает при и убывает при . Кроме того, функция четна.
Тогда уравнение может иметь решение только в случаях или . Решив эту совокупность, получим
Второе решение.
Левую часть уравнения преобразуем по формуле разности косинусов, правую — по формуле косинуса двойного аргумента:
В правой части применим формулу разности квадратов и введём обозначения:
Тогда наше уравнение запишется в виде
Перенесём всё в правую часть и вынесем множитель
Ясно, что выражение в скобках строго больше 1 в виду неравенства
Значит, при уравнение решений не имеет, то есть оно может иметь решения только при или
Проверяем эти значения подстановкой в уравнение и убеждаемся, что при этих значениях уравнение верно.
Делаем обратную замену и получаем ответ
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!