Числа сочетаний (цэ изэн пока)
Ошибка.
Попробуйте повторить позже
В Криптоландии используется алфавит, состоящий из четырёх латинских букв Любая последовательность букв алфавита будет словом криптоландского языка при выполнении единственного ограничения: если в последовательности есть хоть одна буква " то тогда в ней обязательно должны встретиться две буквы ""подряд.
Например, последовательности являются словами, а последовательности — не являются. Найдите число слов длины 8 в криптоландском языке.
Источники:
Подсказка 1
Всего существует 4⁸ последовательностей длины 8, составленных из букв криптоландского алфавита. Подумайте, как удобнее всего почитать число тех последовательностей, которые являются словами.
Подсказка 2
Все последовательности разбиваются на три непересекающихся множества: 1. Не содержащие буквы a; 2. Содержащие букву а и хотя бы одну пару аа; 3. Содержащие букву а и не содержащие ни одной пары аа. При этом очевидно, что элементы 1 и 2 множеств являются словами, а 3 - нет. Посчитать число элементов второго множества выглядит либо очень сложной задачей, либо вовсе нереальной. Тогда удобнее всего найти число последовательностей, являющихся словами, будет просто вычтя из 4⁸ число элементов 3 множества. Подумайте, каким образом их можно сосчитать.
Подсказка 3
Для n букв а в слове возможно найти число способов расставить их в последовательности длины 8 по формуле: число сочетаний из 8+1-n по n. Кроме того у нас есть еще 3^(8-n) способов расставить b, c, d на оставшиеся места. Подумайте, какое максимально значение может принимать n.
Подсказка 4
При n ≥ 5 гарантировано будет существовать пара aa. Значит, они нам не подходят. Теперь найдем число последовательностей для n = 1, 2, 3, 4, сложим их и таким образом получим количество элементов 3 множества.
Множество всех последовательностей длины состоит из последовательностей. Это множество разбивается на три непересекающихся между собой подмножества:
- 1.
-
Последовательностей, не содержащих
- 2.
-
Последовательностей, содержащих но не содержащих двух подряд идущих таких букв.
- 3.
-
Последовательностей, содержащих , в которых встречаются две подряд идущие такие буквы.
Чтобы решить задачу, нужно найти число последовательностей во втором подмножестве и вычесть его из числа
В свою очередь, множество последовательностей второго типа можно разбить на непересекающиеся подмножества, в которые входят последовательности, содержащие букв "".
Поскольку число последовательностей длины , содержащих ровно отдельно стоящих букв , равно то общее число последовательностей второго типа будет равно
В итоге получаем
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!