Числа сочетаний (цэ изэн пока)
Ошибка.
Попробуйте повторить позже
Дан правильный 27-угольник . Найдите количество неравнобедренных треугольников с вершинами в точках . Треугольники, отличающиеся порядком вершин (например, и ), считаются за один треугольник.
Источники:
Подсказка 1
Кажется, что равнобедренные треугольники нам проще представляются, чем произвольные, поэтому давайте попробуем использовать принцип дополнения и из всех треугольников вычтем равнобедренные. Так мы разбили задачу на 3 более простых: 1 - посчитать кол-во всех треугольников, 2 - посчитать кол-во равнобедренных, 3 - проверить, что мы посчитали ровно столько треугольников, сколько нужно.
Подсказка 2
Понятно, что любой треугольник однозначно задаётся тремя своими вершинами, поэтому, чтобы найти кол-во всех треугольников нужно просто выбрать 3 вершины, не забудьте, что треугольники не отличаются порядком вершин.
Подсказка 3
Верно, всех треугольников C₂₇³. Чтобы посчитать кол-во равнобедренных треугольников, давайте попробуем найти что-то, что может помочь зафиксировать его.
Подсказка 4
У равнобедренного треугольника есть особая вершина - та, в которой пересекаются равные стороны. Нам ещё не хватает одной вершины, чтобы построить р/б треугольник, потому как третья восстановится однозначно по нашим двум.
Подсказка 5
Если задуматься, то на самом деле р/б треугольников вдвое меньше, потому что когда мы фиксировали его особую вершину, то мы могли выбрать как левую, так и правую из оставшихся вершин при подсчёте и получить тот же треугольник, поэтому результат нужно поделить пополам.
Подсказка 6
А не посчитали ли мы что-то ещё по несколько раз? У нас же есть равносторонние треугольники, которые мы посчитали трижды, ведь они "р/б с трёх вершин", поэтому стоит их вернуть так, чтобы мы их вычли ровно 1 раз.
Всего есть треугольников. Каждой вершине соответствует равнобедренных треугольников(с вершиной в этой точке). При этом, если взять , то получится, что каждый равносторонний треугольник мы посчитали раза. Значит, равнобедренных треугольников , а неравнобедренных —
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!