Тема . Количество способов, исходов, слагаемых и теория вероятностей

Числа сочетаний (цэ изэн пока)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела количество способов, исходов, слагаемых и теория вероятностей
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#78843

Дан правильный 27-угольник A A ...A
 1 2    27  . Найдите количество неравнобедренных треугольников с вершинами в точках A1,A2,...,A27  . Треугольники, отличающиеся порядком вершин (например, A1A2A4  и A2A4A1  ), считаются за один треугольник.

Источники: Ломоносов-2014, 9.3 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Кажется, что равнобедренные треугольники нам проще представляются, чем произвольные, поэтому давайте попробуем использовать принцип дополнения и из всех треугольников вычтем равнобедренные. Так мы разбили задачу на 3 более простых: 1 - посчитать кол-во всех треугольников, 2 - посчитать кол-во равнобедренных, 3 - проверить, что мы посчитали ровно столько треугольников, сколько нужно.

Подсказка 2

Понятно, что любой треугольник однозначно задаётся тремя своими вершинами, поэтому, чтобы найти кол-во всех треугольников нужно просто выбрать 3 вершины, не забудьте, что треугольники не отличаются порядком вершин.

Подсказка 3

Верно, всех треугольников C₂₇³. Чтобы посчитать кол-во равнобедренных треугольников, давайте попробуем найти что-то, что может помочь зафиксировать его.

Подсказка 4

У равнобедренного треугольника есть особая вершина - та, в которой пересекаются равные стороны. Нам ещё не хватает одной вершины, чтобы построить р/б треугольник, потому как третья восстановится однозначно по нашим двум.

Подсказка 5

Если задуматься, то на самом деле р/б треугольников вдвое меньше, потому что когда мы фиксировали его особую вершину, то мы могли выбрать как левую, так и правую из оставшихся вершин при подсчёте и получить тот же треугольник, поэтому результат нужно поделить пополам.

Подсказка 6

А не посчитали ли мы что-то ещё по несколько раз? У нас же есть равносторонние треугольники, которые мы посчитали трижды, ведь они "р/б с трёх вершин", поэтому стоит их вернуть так, чтобы мы их вычли ровно 1 раз.

Показать ответ и решение

Всего есть C3  =2925
  27  треугольников. Каждой вершине соответствует 13  равнобедренных треугольников(с вершиной в этой точке). При этом, если взять 27⋅13= 351  , то получится, что каждый равносторонний треугольник мы посчитали 3  раза. Значит, равнобедренных треугольников 351− 2⋅9= 333  , а неравнобедренных — 2925 − 333= 2592.

Ответ: 2592

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!