Метод шаров и перегородок
Ошибка.
Попробуйте повторить позже
Гномы Глоин, Оин и Траин нашли одинаковых драгоценных камней и хотят разделить их между собой так, что каждый из них получит не менее камней. Сколькими способами гномы смогут это сделать?
Источники:
Подсказка 1
Для начала, давайте поймём, что если у каждого гнома есть 10 камней, то есть и 9. Выдадим каждому гному 9 камней(они одинаковы, так что можно в любом порядке). После этого у нас осталось 43 камня, сколькими способами их можно разделить между тремя гномами, чтобы каждому достался хотя бы один?(из этих 43)
Подсказка 2
Для этого вспомним идею шаров и перегородок! Выложим 43 камня в ряд, тогда нам надо поставить между ними 2 перегородки, причем так, чтобы в каждой части был хотя бы один камень. Сколько способов поставить две перегородки?
Подсказка 3
Верно, для перегородок у нас есть ровно 42 места! В таком случае, ответом на задачу будет число сочетаний из 42 по 2.
Выдадим каждому гному по камней, а оставшиеся камня выложим в ряд. Чтобы разделить оставшиеся камни между гномами, достаточно расположить на места между камнями два разделителя. Глоин получит камни левее первого разделителя, Оин – камни между двумя разделителями, а Траин – камни правее второго разделителя. Число способов расположить эти два разделителя равно
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!