Тема . Тождественные преобразования

Закрываем скобочки, раскладываем на множители, идём с конца, вангуем

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тождественные преобразования
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82685

Целые числа a  , b  , c  и натуральное число n  таковы, что

a+ b+c =1

и

a2+b2+ c2 = 2n +1

Докажите, что a3+ b2 − a2− b3  делится на n  .

Источники: Олимпиада Эйлера, 2018, ЗЭ, 5 задача(см. old.mccme.ru)

Показать доказательство

Заметим, что в выражении a3+ b2− a2− b3  нет переменной c.  Попробуем от неё избавиться и в исходных условиях. Для этого из a+ b+ c= 1  выразим c= 1− a− b.  Теперь подставим полученное во второе условие:

 2   2         2
a + b +(1− a− b) = 2n+ 1

Раскрываем скобки и получаем:

 2  2      2  2
a + b+ 1+ a +b − 2a− 2b+ 2ab= 2n +1

Приводим подобные слагаемые и после делим уравнение на 2:

a2+b2− a− b+ab= n

Вернёмся к выражению a3+ b2− a2− b3.  В нём группируем кубы и квадраты, пользуемся формулами сокращенного умножения:

(a3 − b3)+(b2− a2)= (a − b)(a2+ ab+b2)+(b− a)(b+ a)

Вынесем a− b  из обеих скобок:

       2      2
(a− b)(a +ab+ b − a − b)

Выше мы уже нашли, что вторая скобка равна n,  тогда получаем

       2      2
(a− b)(a +ab+ b − a − b)= n(a − b)

a− b  — целое число, поэтому n(a− b)  делится на n.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!