Закрываем скобочки, раскладываем на множители, идём с конца, вангуем
Ошибка.
Попробуйте повторить позже
При каких целых число является составным (то есть имеет хотя бы 3 натуральных делителя)?
Выделим в исходном выражении полный квадрат: прибавим и вычтем :
Так как используем формулу разности квадратов:
В каждой скобке тоже выделим полный квадрат:
Найдем, при каких значение выражения - простое число. Заметим, что хотя бы одна из полученных скобок должна быть равна а иначе произведение не будет простым. Решим отдельно два уравнения. Для первой скобки:
Для второй скобки:
Теперь проверим, что при и получаются простые числа:
- При имеем
- При имеем
Итак, получили, что для выражение будет принимать простое значение. Тогда для всех остальных целых выражение будет составным.
при любых целых, кроме 1 и -1.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!