Тема . Тождественные преобразования

Закрываем скобочки, раскладываем на множители, идём с конца, вангуем

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тождественные преобразования
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82686

При каких целых m  число m4+ 4  является составным (то есть имеет хотя бы 3 натуральных делителя)?

Показать ответ и решение

Выделим в исходном выражении полный квадрат: прибавим и вычтем 4m2  :

 4       22    2   2    2    2   2    2
m + 4= (m ) +4m  +2 − 4m = (m + 2)− 4m

Так как 4m2 =(2m)2,  используем формулу разности квадратов:

  2    2     2    2         2
(m + 2) − (2m) = (m + 2− 2m )(m + 2+ 2m)

В каждой скобке тоже выделим полный квадрат:

  2         2                2         2
(m  +2 − 2m)(m + 2+ 2m)= ((m − 1) + 1)((m + 1)+ 1)

Найдем, при каких m  значение выражения - простое число. Заметим, что хотя бы одна из полученных скобок должна быть равна  1,  а иначе произведение не будет простым. Решим отдельно два уравнения. Для первой скобки:

(m − 1)2+ 1= 1

(m − 1)2 =0

m = 1

Для второй скобки:

      2
(m + 1) + 1= 1

     2
(m + 1) =0

m =−1

Теперь проверим, что при m= 1  и m = −1  получаются простые числа:

  • При m =1  имеем 14+ 4=5
  • При m =− 1  имеем (−1)4+4 =5

Итак, получили, что для m= ±1  выражение будет принимать простое значение. Тогда для всех остальных целых m  выражение будет составным.

Ответ:

при любых целых, кроме 1 и -1.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!