Тема . Тождественные преобразования

Закрываем скобочки, раскладываем на множители, идём с конца, вангуем

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тождественные преобразования
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89662

Целые числа x,y,z  таковы, что xy+ yz+ zx= 1.  Докажите, что число (1 +x2)(1+ y2)(1+ z2)  является полным квадратом.

Подсказки к задаче

Подсказка 1

Первое, о чём хочется задуматься, зачем же нам дали равенство с переменными и единицей. Выразить оттуда что-то вряд ли получится. Но связь с произведением нужно находить. Что есть общего из равенства в условии и с одной из скобок?

Подсказка 2

Да, это самое банальное, но самое верное. У них общая единица, поэтому нам ничего не мешает вместо неё подставить нашу сумму попарных произведений. Но чем же на самом деле теперь является каждая из скобок?

Подсказка 3

Верно, это (x+y)(z+x), например, в первой скобке. С остальными получится аналогично. Осталось увидеть, что это решает задачу. Победа!

Показать доказательство

Из условия следует, что

   2              2
1+x  =xy+ yz+ zx+x  =(x+ y)(z+ x)

Аналогично разложив на множители 1+ y2 =(y+ x)(y+ z)  и 1 +z2 = (z+x)(z+y),  получим

(   2)(   2)(    2)                  2
 1+x   1+ y  1+ z  =((x+y)(y+z)(z +x))

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!