Оценки в уравнениях без логарифмов и тригонометрии
Ошибка.
Попробуйте повторить позже
Решите уравнение
Для начала раскроем скобки и перенесём всё в левую часть. Получим
Попробуем выделить полные квадраты. Во-первых, можно взять и
. Если это — квадраты, то для полного квадрата суммы или
разности им не хватает удвоенного попарного произведения, то есть в данном случае
. У нас есть это выражение с коэффициентом
, поэтому возьмём со знаком минус:
.
Осталось . Это тоже полный квадрат:
. Таким образом, всё выражение мы представили
как
Наконец, воспользуемся тем, что сумма двух квадратов может быть равно 0 только в случае, когда оба этих квадрата равны 0. Получаем
условия и
. Из первого мы получаем, что
, подставляя это во второе, получим
. Таким образом,
и
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!