Тема . Уравнения без логарифмов и тригонометрии

Оценки в уравнениях без логарифмов и тригонометрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#67596

Решите уравнение

 √- 2016  √ ----2016
( x)   + ( 1− x)  = 1

Источники: ПВГ-2016 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Ключом к решению этой задачи является правильно написанное ОДЗ! Поэтому для начала найдем ОДЗ нашего уравнения!

Подсказка 2

Верно, 0 ≤ x ≤ 1! А что можно сказать про (√x)²⁰¹⁶ и (√(x-1))²⁰¹⁶? Может мы их можем как-то оценить, учитывая наше ОДЗ?

Подсказка 3

Да, если есть число, которое меньше единицы, но больше нуля, то при возведении в степень это число будет уменьшатся! То есть, мы имеем: x¹⁰⁰⁸ < x и (1-x)¹⁰⁰⁸ < 1 — x! Таким образом, если x ≠ 0 и x ≠ 1, то решений нет! Осталось проверить случаи x = 1 и x = 0.

Показать ответ и решение

ОДЗ: 0≤ x≤ 1.

Подстановкой легко убедиться, что x= 0  и x = 1  — это решения.

При 0< x< 1  (на оставшейся области ОДЗ) оценим слагаемые в левой части

{                √- 2016
  0< x< 1  ⇐⇒   ( x)√ --<-x2016
  0< 1− x< 1  ⇐⇒   ( 1− x)   <1− x

Складывая эти неравенства, получаем

 √- 2016  √ ----2016
( x)   + ( 1− x)  < x+ (1 − x)= 1

Поэтому на интервале (0;1)  левая часть строго меньше единицы и равняться единице не может.

Ответ:

 0;1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!