Тема . Уравнения без логарифмов и тригонометрии

Оценки в уравнениях без логарифмов и тригонометрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68179

Найдите сумму всех корней уравнения:

∘--2--------------  ∘--2--------------  ∘--2--------------
 2x − 2024x+ 1023131+  3x − 2025x+ 1023132+  4x − 2026x+ 1023133=

=∘x2-−-x+1-+∘2x2-− 2x+-2+ ∘3x2−-3x+-3

Источники: ФЕ-2023, 11.1 (см. www.formulo.org)

Показать ответ и решение

Обозначим

      2           1 2  3
f(x)= x − x+ 1= (x −2) + 4 >0

g(x)= x2− 2023x+ 1023130=(x− 1010)(x− 1013)

Тогда уравнение имеет вид

∘ --------- ∘---------  ∘ ---------  ∘ ---- ∘----  ∘ ----
  f(x)+ g(x)+  2f(x)+g(x)+  3f(x)+ g(x)=   f(x)+  2f(x)+  3f(x)

Если какое-то значение x  является решением, то g(x)= 0,  ведь иначе левая часть больше (при g(x)> 0  ) или меньше (при g(x) <0  ) в силу монотонного возрастания функции      √-
h(t)=  t  на своей области определения.

При этом легко видеть, что все решения g(x)=0  являются и решениями исходного уравнения (будет верное тождество, при этом обе части определены в силу положительности функции f  ), то есть это не только необходимое, но и достаточное условие.

Корнями уравнения g(x)= 0  являются числа 1010  и 1013  . Их сумма равна 2023.

Ответ: 2023

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!