Тема . Уравнения без логарифмов и тригонометрии

Оценки в уравнениях без логарифмов и тригонометрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68245

Найдите все вещественные решения следующего уравнения с 4  неизвестными:

 2   2  2   2
x + y +z + t = x(y+ z+ t)
Показать ответ и решение

Первое решение.

Посмотрим на это как на квадратное уравнение относительно x.  Его дискриминант равен

        2    2   2  2                 2   2  2
(y+ z+ t) − 4(y + z +t )= 2(yz+ zt+ yt)− 3(y +z + t)=

               2  2   2   2   2  2
= 2(yz+ zt+yt− y − z − t)− (y +z + t)

Вспомним известное неравенство

y2+z2+ t2 ≥yz+ zt+yt,

которое можно доказать так:

2(y2+ z2+ t2− yz− zt− yt)≥ 0  ⇐⇒   (y− z)2+ (z− x)2+(x− y)2 ≥0

Теперь мы видим, что дискриминант состоит из суммы двух неположительных слагаемых

2(yz+ zt+yt− y2− z2− t2)

и

−(y2+z2+ t2)

Таким образом, решения могут быть лишь когда эти слагаемые равны 0.  Это возможно лишь при y = z = t= 0,  значит и x =0.

Второе решение.

Явно докажем, что левая часть не меньше правой, то есть

x2− x(y+z +t)+y2+ z2+ t2 ≥ 0 ⇐⇒

    y+ z+t    3             1
(x− --2---)2+ 4 ⋅(y2 +z2+ t2)− 4 ⋅(2ty+ 2yz+ 2zt) ⇐ ⇒

    y+-z+-t2  1   2       2  2       2  2       2
(x−    2   )+ 4 ⋅(y − 2yz+ z + t− 2ty +y + t − 2tz+z )≥ 0

Последнее верно в силу неотрицательности каждого из квадратов.

    y+ z+ t
4(x− ---2---)2+ (y− z)2+ (z− t)2+ (t− y)2 ≥ 0

Для равенства правой и левой части из условия должно выполняться

(
|||| 2x= y+ z+ t
{ y− z = 0
|||| z− t= 0
( t− y = 0

Сразу получаем, что решением является четвёрка x= y = z = t=0.

Ответ: (0, 0, 0, 0)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!