Оценки в уравнениях без логарифмов и тригонометрии
Ошибка.
Попробуйте повторить позже
Найдите все вещественные решения следующего уравнения с неизвестными:
Подсказка 1
Относительно замен y,z,t - уравнение равноправно. Вот справа у нас 4 слагаемых второй степени, а слева - 3 слагаемых, условно, «второй степени» (то есть ху,xz,xt ). При этом, если мы увеличиваем х, то чаще всего увеличивается сильнее х^2, аналогично с у,z,t. Все это наталкивает нас на мысли о том, что левая часть как будто всегда больше или равна правой. Но если мы пытаемся решить задачу так, как это доказать?
Подсказка 2
Можно доказывать это просто используя какие-то неравенства и оценки. Однако в силу того, что здесь степени не больше 2, можно рассматривать это как квадратное уравнение относительно какой-нибудь переменной, ведь если то, что наш квадратный трехчлен всегда больше или равен 0, то его дискриминант всегда меньше или равен 0, и наоборот. Таким образом, можно доказать, что дискриминант нашего уравнения относительно какой-то переменной неположителен. Вот только относительно какой переменной? Мы, в теории, хотим, чтобы наш дискриминант получился симметричным, относительно переменных, которые в нём есть (с таким удобно работать). Значит, нужно решать относительно х
Подсказка 3
Дискриминант получится равным 2(yz+zt+ty-t^2-z^2-y^2)-(t^2+z^2+y^2). Ого, но ведь первая скобка - это достаточно популярная конструкция, такое выражение всегда отрицательно. Хмм… Вот только мы забыли, почему это так. А может быть, разложить как-то на сумму квадратов?
Подсказка 4
Действительно, это просто (y-t)^2+(z-t)^2+(z-y)^2 ≤ 0. При этом второе слагаемое в дискриминанте тоже неположительно, так как это сумма квадратов. Значит, весь дискриминант неположителен. Ура! Значит, остаётся понять, когда достигается равенство, и записать ответ!
Первое решение.
Посмотрим на это как на квадратное уравнение относительно Его дискриминант равен
Вспомним известное неравенство
которое можно доказать так:
Теперь мы видим, что дискриминант состоит из суммы двух неположительных слагаемых
и
Таким образом, решения могут быть лишь когда эти слагаемые равны Это возможно лишь при значит и
Второе решение.
Явно докажем, что левая часть не меньше правой, то есть
Последнее верно в силу неотрицательности каждого из квадратов.
Для равенства правой и левой части из условия должно выполняться
Сразу получаем, что решением является четвёрка
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!