Оценки в уравнениях без логарифмов и тригонометрии
Ошибка.
Попробуйте повторить позже
Решите уравнение
Подсказка 1
Сначала может быть непонятно, что вообще делать с уравнением, у которого сразу три знака корня... не возводить же всё в квадрат( А какой у нас ещё метод есть для решения уравнений, кроме топорной алгебры?
Подсказка 2
Метод оценки! В таких случаях часто бывает полезно оценить, а какие значения может принимать каждая из частей уравнения — найти максимальное и минимальное значение каждой из частей (для этого под корнями можно выделить полные квадраты).
Подсказка 3
Оказывается, наибольшее значение левой части уравнения совпадает с наименьшим значением правой. Равенство достигается, только когда левая часть максимальна, а правая минимальна. То есть когда в соответствующих оценках-неравенствах достигается равенство
Выделим в левой части уравнения полные квадраты под корнями:
Так как подкоренные выражения не превосходят 4 и 1 соответственно, то сумма корней не больше
а правая часть исходого уравнения не меньше 3. Получаем
Следовательно,
То есть во всех неравенствах должно достигаться равенство:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!