Оценки в уравнениях без логарифмов и тригонометрии
Ошибка.
Попробуйте повторить позже
Решите уравнение
Подсказка 1
Присмотритесь к этому уравнению, тут есть произведение двух скобок. При этом, когда мы не знаем, как нормально решать уравнение(а мы не знаем - тут вообще уравнение относительно двух переменных и какая-то жуть), мы начинаем оценивать или заменять. Замена как будто не подходит, потому что две переменные(опять получим уравнение с двумя переменными, ну может чуть лучше выглядящее), а вот оценка очень даже просится.
Подсказка 2
Конечно, мы хотим оценить каждый из трехчленов константой снизу и получить константу в оценке. Главное чтобы сошлось! Но тут как ни странно сходится и мы получаем, что левая часть всегда больше или равна правой. Что это значит для нас и какие тогда корни уравнения?
Заметим, что
для каждого , а
для каждого . Поэтому левая часть уравнения не меньше , притом равенство достигается только при и . Это и даёт ответ.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!