Иррациональные неравенства (с радикалами)
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Подсказка 1
В первую очередь надо записать ограничения на икс, так как подкоренные выражения должны быть неотрицательными. Теперь можно заметить, что в одной части в числителе 1, а в другой 2, для чего так сделано?
Подсказка 2
Перенесём всё налево и попробуем привести дроби к общему знаменателю. Тогда в числителе -4 сократится с (-2) * (-2). Так вот зачем взяли такие числители! Осталось дорешать неравенство обобщённым методом интервалов. То есть найти нули числителя и знаменателя, отметить их на числовой прямой, причём выколоть нули знаменателя, расставить знаки на каждом промежутке, взять нужные промежутки.
Подсказка 3
Не забыли про ограничения? Их нужно пересечь с полученным множеством!
ОДЗ задаётся четырьмя условиями:
пересекая которые, получаем
Приведём дроби из условия к общему знаменателю
Знак разницы неотрицательных чисел (в данном случае корней из каких-то выражений) совпадает со знаком разницы их квадратов, потому что разность квадратов раскладывается в произведение разности этих чисел (знак которой нам и надо понять) и суммы этих чисел (которая и так неотрицательна, так что не влияет на знак). Поэтому неравенство равносильно:
Откуда по методу интервалов .
Пересекаем с ОДЗ и получаем ответ.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!