Тема . Неравенства без логарифмов и тригонометрии

Иррациональные неравенства (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85023

Решите неравенство

∘ √----------
   16x+ 36+ 6≥ x
Подсказки к задаче

Подсказка 1

Столько корней, значит, стоит сразу посчитать ОДЗ. При каких х из ОДЗ неравенство всегда выполняется, так как корень принимает только неотрицательные значения?

Подсказка 2

При x < 0. Значит, теперь мы рассматриваем только х ≥ 0. Больше ничего не поделать, поэтому придётся возводить обе части неравенства в квадрат. Перенесём 6 в правую часть и опять получим неравенства вида «корень ≥ выражение через х». И вновь можно сказать, что когда правая часть отрицательная, то неравенство всегда выполняется, так как корень принимает только неотрицательные значения.

Подсказка 3

И вот мы рассматриваем х, такие что х ≥ 0 и x² - 6 ≥ 0, и опять возводим в квадрат наше неравенство, которое после приведения подобных и разложения на множители можно решить методом интервалов.

Показать ответ и решение

∘ √----------
   16x+ 36+ 6≥ x

______________________________________________________________________________________________________________________________________________________

ОДЗ:

                    9
16x +36≥ 0  ⇐⇒   x≥ −4

_________________________________________________________________________________________________________________________________________________________________________________

При   9
− 4 ≤x < 0  видно, что правая часть отрицательна, а левая положительна, неравенство выполняется, значит, эти значения подходят.

_________________________________________________________________________________________________________________________________________________________________________________

Теперь рассмотрим случай, когда x ≥0.  Возведём наше выражение в квадрат

√ -------
  16x +36+ 6≥ x2

√ -------
  16x +36≥ x2− 6

Рассмотрим несколько случаев. Во-первых,

                 (      )
x2− 6 <0 ⇐ ⇒  x ∈ −√6,√6-

С учётом условия x ≥0  получим    [  -)
x∈ 0,√6 .

Во-вторых,

(
{  x2− 6 ≥0
(          (2   )2
   16x+ 36≥  x − 6

(|{  x∈ (− ∞,−√6] ∪[√6,+∞ )

|(  16x +36≥ x4− 12x2+ 36

Учтём, что у нас x≥ 0

(     [√ -   )
|{  x∈   6,+∞
|(    3
   x(x − 12x − 16)≤ 0

(     [√ -   )
|{  x∈   6,+ ∞
|(             2
   x(x − 4)(x +2) ≤ 0

Решим второе неравенство методом интервалов

(|    [√-    )
{ x ∈  6,+∞
|( x ∈{−2}∪ [0,4]

   [    ]
x ∈ √6,4

_____________________________________________________________________________________

В итоге, объединив все случаи получим, что    [    ]
x ∈ − 9 ,4 .
     4

Ответ:

[− 9;4]
  4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!