Тема . Неравенства без логарифмов и тригонометрии

Иррациональные неравенства (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85029

Решите неравенство

-----3x+3-----
3 − √x2-− 2x+-10 ≤ 1
Показать ответ и решение

Запишем ОДЗ:

({ x2− 2x+10≥ 0
     √----------
( 3−  x2− 2x+ 10 ⁄=0

(
{ (x− 1)2+ 9≥ 0
( (x− 1)2+ 9⁄= 9

x⁄= 1

Теперь преобразуем исходное неравенство

       (  √ ---------)
3x+-3−--3−--x2−-2x-+10-
    3 − √x2-− 2x+-10  ≤ 0

    √----------
3x+√-x2−-2x+10-≤0
3 −  x2− 2x+ 10

Докажем, что знаменатель всегда отрицательного знака

   ∘ -2--------
3−   x − 2x+ 10< 0

9 <x2 − 2x+ 10

0< (x− 1)2

Следовательно, исходное неравенство равносильно

    ∘-2--------
3x+  x − 2x+ 10 ≥0

∘x2−-2x+-10-≥− 3x

Заметим, что если − 3x < 0,  т.е. x >0,  то неравенство верно, т.к. левая часть неотрицательна. Теперь рассмотрим случай x ≤0,  возведём неравенство в квадрат.

x2− 2x+ 10≥ 9x2

8x2+ 2x − 10≤ 0

(x − 1)(4x+ 5)≤0

   [    ]
x ∈ − 5;1
     4

Но т.к. x ≤0,  то

x ∈[− 5;0]
     4

Объединим все случаи и учтём ОДЗ, в итоге получим

   [ 5  )
x ∈ −4 ;1  ∪(1;+∞ )
Ответ:

[− 5;1) ∪(1;+∞)
  4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!