Тема . Неравенства без логарифмов и тригонометрии

Иррациональные неравенства (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85030

Решите неравенство

∘--2-------  1− 2x
 3x − 8x− 3 > 3
Показать ответ и решение

Запишем ОДЗ:

 2
3x − 8x− 3≥ 0

(x − 3)(3x+ 1)≥0

   (       ]
x ∈ − ∞;− 1 ∪[3,+∞ )
         3

Теперь заметим, что если правая часть исходного неравенства отрицательна, то оно верно, т.к. левая часть неотрицательна.

1−-2x-
  3  < 0

x > 1
    2

Учтём ОДЗ и получим, x∈[3,+ ∞).

Теперь рассмотрим случай, когда x ≤ 1,
    2  т.е. правая часть исходного неравенства неотрицательна. Возведём его в квадрат.

3x2− 8x − 3 > 1− 4x+-4x2
                9

   2
23x − 68x− 28> 0

   (    34−-30√2-)  (34+-30√2    )
x∈  − ∞;   23    ∪     23   ;+∞

Учтём ОДЗ и x ≤ 1,
    2  получим,    (         √ -)
x∈  −∞; 34−-30--2 .
           23

В итоге ответом будет

   (          √-)
x ∈  −∞;34−-30-2  ∪[3;+∞ )
           23
Ответ:

(    34 − 30√2)
 −∞; ---23---- ∪[3;+ ∞)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!