Тема . Неравенства без логарифмов и тригонометрии

Иррациональные неравенства (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88252

Решите неравенство

∘ --7-----3
  5x-−-332x-≤ x3
  5x− x − 4
Показать ответ и решение

Выпишем ограничения

({  5x7 − 32x3
   5x-− x3−-4 ≥ 0
( 5x− x3− 4⁄= 0

При x3 < 0  неравенство не имеет решений.

При x3 ≥ 0  с учетом ограничений возведем исходное неравенство в квадрат:

  7     3
-5x--− 332x-≤ x6
5x − x − 4

5x7− 32x3−-5x7+-x9+-4x6-≤ 0
      5x− x3− 4

x3(x6+ 4x3 − 32)
--5x−-x3− 4--≤ 0

        3  3    3
-----(-x-(x-−√ 4)()x(+8)√----)-≤ 0
(1− x) x+ 1+--17   x− --17-− 1
            2           2

Так как x≥ 0  , решим методом интервалов неравенство

     x(x3− 4)
-----(---√17-− 1)-≤ 0
(1− x) x− ---2--

Заметим, что √ --
--17-− 1 <413
   2  , так как

     1      2   2       1
17<(43 ⋅2+ 1) =4 3 ⋅4+1 +43 ⋅4

4< 413(413 + 1)

16< (413 + 1)3

2⋅213 < 1+ (213)2

    1
0< (23 − 1)2

Решив неравенство, получаем

       (  √ --  )  [ 1    )
x ∈{0}∪  1;--172− 1 ∪ 43;+∞

Преобразовав неравенство из ограничений, получим

   x3(x4− 352)⋅5
-----(---√17-− 1)-≥ 0
(1− x) x− ---2--

Решив методом интервалов, получим

        (           ]
          √17− 1-∘432
x∈ [0;1)∪    2  ;   5

Заметим, что ∘ ---
4 32> 3√4-
  5  , так как  3            7
323-> 44  =⇒   23 >1
5            5

Пересекая с решением неравенства, получаем

        [       ]
         3√- 4∘-32-
x ∈{0}∪   4;  5
Ответ:

    [ 3√- 4∘-32]
{0}∪   4;  5-

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!