Тема . Неравенства без логарифмов и тригонометрии

Иррациональные неравенства (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88257

Решите неравенство

√16−-x2
-3−-x--≤ 1
Подсказки к задаче

Подсказка 1

Первым делом в выражении с корнями и дробями стоит найти ОДЗ. А что делать дальше? У нас есть дробь, знак числителя которой нам известен... Может, попробуем обратить внимание на знак всего выражения?

Подсказка 2

Конечно, когда знаменатель отрицательный, то и всё наше выражение будет неположительным, а значит, точно не больше единицы. Остаётся рассмотреть случаи с положительным знаменателем. Как мы тогда можем преобразовать наше неравенство?

Подсказка 3

Верно, если знаменатель положителен, то можно домножить на него обе части неравенства и затем возвести в квадрат! Теперь нам нужно только аккуратно посчитать и пересечь обе серии решений с ОДЗ

Показать ответ и решение

ОДЗ: x∈ [−4;3)∪(3;4].

Если 3− x < 0  , то неравенство верно. Пересекая с ОДЗ, получаем, что x∈ (3;4]  являются решениями. При 3 − x >0  обе части неравенства неотрицательные, поэтому имеем

    2       2
16− x ≤(3− x)

 2
2x − 6x− 7≥ 0

   (    3−-√23]  [3+-√23    )
x∈  − ∞;   2   ∪    2   ;+∞

Пересекая с ОДЗ, получаем

  [      √ -]
x∈ − 4;3-−--23
         2

Объединяя две серии, получаем ответ.

Ответ:

[  3 − √23]
− 4;--2--  ∪(3;4]

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!