Тема . Тригонометрия

Формулы в тригонометрических уравнениях

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83950

Решите уравнение

        ∘ --(---π)-
(1+ 2sinx)  cos x+ 4  =0
Показать ответ и решение

        ∘ --(---π)-
(1+ 2sinx)  cos x+ 4  =0

⌊ (
| {  1+2( sinx=) 0
|| (  cos x+ π  ≥0
|⌈    (   π)4
  cos x+ 4 = 0

Решим сначала первый случай

1 +2sin x= 0

           ⌊     π
       1   | x= −6 + 2πk
sin x= −2 ⇔ |⌈     5π      , k∈ ℤ
             x= − 6 +2πk

Проверим условие из системы

   (          )     (  )
cos − π +2πk+ π =cos π- > 0
     6       4       12

  (            )     (   )
cos − 5π-+ 2πk + π = cos − 7π < 0
     6        4        12

Следовательно, в этом случае подходит только x =− π+ 2πk, k∈ ℤ.
     6

Теперь решим второй случай

  (   π)
cos x+ 4  = 0

   π   π
x+ 4 = 2 + πk, k∈ ℤ

   π
x= 4 +πk, k ∈ℤ
Ответ:

− π + 2πk,π +πk, k∈ℤ
  6     4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!