Тема . Тригонометрия

Формулы в тригонометрических уравнениях

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92115

Решите уравнение 2sin3 x= cos3x  .

Источники: ДВИ - 2024, вариант 243, задача 4 (pk.math.msu.ru)

Подсказки к задаче

Подсказка 1

В уравнении присутствует косинус тройного угла, как можно его преобразовать?

Подсказка 2

Распишем его по формуле cos(3x) = 4*(cos(x))³ - 3*cos(x). Теперь у нас и справа, и слева имеется третья степень, и нам хотелось бы её уменьшить, но как это сделать?

Подсказка 3

Поделим обе части на (cos(x))³ . Сейчас в нашем уравнении присутствует тангенс и деление на (cos(x))², но нет ли у нас какой-нибудь формулы, которая их связывает?

Подсказка 4

1/(cos(x))² = 1 + (tg(x))². Имеем уравнение третьей степени от tg(x), с одной стороны которого стоит 0, на что это намекает?

Подсказка 5

Разложите многочлен третьей степени на множители!

Показать ответ и решение

По формуле косинуса тройного угла cos3x= 4cos3x− 3cosx.  Заметим, что cosx ⁄= 0,  так как в противном случае, по основному тригонометрическому свойству sin x⁄= 0,  что противоречит равенству. Значит, мы можем поделить на ненулевое число   3
cos x:

   3        3
2 tg x= 4− cos2x-

Воспользуемся следующей формулой:

  1
cos2x-= 1+ tg2x

Имеем:

2tg3x= 4− 3− 3tg2x

Пусть t=tgx.  Тогда:

2t3+ 3t2− 1= 0

Заметим, что t= −1  — решение этого уравнение, значит можно разделить на t+ 1.  Получим:

(t+ 1)2(2t− 1)= 0

Тогда tgx = −1  или tgx = 12.  Откуда получаем ответ

− π4 + πn,arctg 12 + πn, n ∈ℤ.
Ответ:

− π + πn,arctg 1 +πn, n ∈ℤ
  4        2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!