Формулы в тригонометрических уравнениях
Ошибка.
Попробуйте повторить позже
Решите уравнение .
Источники:
Подсказка 1
В уравнении присутствует косинус тройного угла, как можно его преобразовать?
Подсказка 2
Распишем его по формуле cos(3x) = 4*(cos(x))³ - 3*cos(x). Теперь у нас и справа, и слева имеется третья степень, и нам хотелось бы её уменьшить, но как это сделать?
Подсказка 3
Поделим обе части на (cos(x))³ . Сейчас в нашем уравнении присутствует тангенс и деление на (cos(x))², но нет ли у нас какой-нибудь формулы, которая их связывает?
Подсказка 4
1/(cos(x))² = 1 + (tg(x))². Имеем уравнение третьей степени от tg(x), с одной стороны которого стоит 0, на что это намекает?
Подсказка 5
Разложите многочлен третьей степени на множители!
По формуле косинуса тройного угла Заметим, что так как в противном случае, по основному тригонометрическому свойству что противоречит равенству. Значит, мы можем поделить на ненулевое число
Воспользуемся следующей формулой:
Имеем:
Пусть Тогда:
Заметим, что — решение этого уравнение, значит можно разделить на Получим:
Тогда или Откуда получаем ответ
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!