Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела логарифмы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#38130

Решите уравнение

      (  2     )      ( 3  )        ( 2      )       (3   )
log7x−6 7x +x − 6 ⋅logx+1 x +1 = log7x−6 7x +x− 6 + logx+1 x + 1

Источники: Физтех-2014, 11.1 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Посмотрим на то как выглядит наше уравнение. Хмм… Мы видим, что , по сути, здесь есть две конструкции. Собственно два этих логарифма. Слева их произведение, справа их сумма. А что можно сделать, если мы знаем что сумма двух чисел равна их произведению?

Подсказка 2

Конечно, можно заменить и разложить. ab=a+b => (a-1)(b-1)=1. А как можно сократить единицу, если мы знаем чему равно а и b(логарифмам)? А что это даст?

Подсказка 3

Видим, что log_(7x-6)(7x^2+x-6)=1+log_(7x-6)(x+1). Аналогично со вторым. На выходе получаем уравнение (log_(7x-6)(x+1))*(log_(x+1)(x^2-x+1))=1. Хмм… х+1 много где встречается… Ах, есть же свойство!

Подсказка 4

Свойство о смене оснований в произведении логарифмов. Тогда наше уравнение преобразуется в вид log_(7x-6)(x^2-x+1)=1. А такое мы точно умеем решать. Остается проверить корни на соответствие ОДЗ и записать ответ.

Показать ответ и решение

ОДЗ: 7x− 6 >0,x+ 1> 0,7x− 6⁄= 1,x+1 ⁄=1  . Поскольку

     (  2     )                       ( 3   )         ( 2      )
log7x−6 7x + x− 6 =1+ log7x−6(x +1) и logx+1 x + 1 = 1+logx+1 x − x+ 1

то для замены a= log    (x +1),b=log  (x2− x+ 1)
     7x− 6           x+1 уравнение примет вид

(a+ 1)(b+ 1)=a +b+ 2  ⇐⇒   ab= 1

То есть

log    (x+1)log   (x2− x+1)= log    (x2− x +1)= 1
  7x−6       x+1             7x−6

или 7x− 6 =x2 − x+ 1 ⇐⇒  x2− 8x +7 =0  ⇐ ⇒  x ∈{1;7}.  После проверки ОДЗ получаем ответ.

Ответ:

 7

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!