Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела логарифмы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#38134

Решите уравнение

         ∘----√-
(1− log2x)⋅ logx2 x = 1

Источники: ПВГ-2016, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Для начала, конечно же, запишем ОДЗ! Теперь анализируем уравнение: метод рационализации здесь нам вряд-ли поможет, есть 2 логарифма, и по итогу хотелось бы их преобразовать к одинаковому виду и сделать замену.

Подсказка 2

Как их преобразовывать? Например, из первой скобки можно сделать один логарифм, а во втором логарифме избавиться от √х и разложить полученный логарифм на 2 хороших слагаемых!

Подсказка 3

Итак, по итогу мы можем из обоих логарифмов получить log_(x/2) 2, или подобный логарифм. Осталось лишь сделать замену этого логарифма на новую переменную, решить уравнение относительно неё, вернуться к логарифмам и учесть ОДЗ!

Показать ответ и решение

ОДЗ:

(| x >0
{ x ⁄= 1
|( 2    √-
  logx∕2 x ≥0

На ОДЗ по свойствам логарифмов получаем уравнение

(    2) ∘ 1-----x---
  log2x  ⋅ 2 logx2(2 ⋅2)= 1

  (    ) ∘ -------- √ -
−  log2 x ⋅ 1+ logx2 2=  2
      2

− ∘1+-logx-2= √2⋅logx 2
        2         2

При замене t=logx2
     2  после возведения в квадрат (не равносильный переход, а следствие, так что корни проверим) получаем

1+ t=2t2  ⇐⇒   t∈{1;− 1}
                     2

Обратная замена:

t=1  −→   x =2  ⇐ ⇒  x =4
          2

    1       ∘-2             1
t= −2  −→     x = 2 ⇐⇒   x= 2

После подстановки в исходное уравнение получаем, что x= 4  не подходит, а    1
x= 2  подходит.

Ответ:

 1
2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!