Сложные логарифмические уравнения
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Подсказка 1
Достаточно много ограничений бросается сразу в глаза. Выписываем и замечаем, что логарифмы очень даже похожи, но все же разные. А можем ли сделать их одинаковыми?
Подсказка 2
Конечно! Стоит “перевернуть” один из них по соответствующему свойству (аргумент так удачно не может быть равен 1). А чему тогда должно быть равно значение этого логарифма из уравнения?
Подсказка 3
Получаем 2 уравнения с логарифмом и числом. Можем сразу действовать по определению и избавиться от логарифмов! А далее остается решить два знакомых уравнения и задачка убита.
Подсказка 4
От модулей можем избавиться рассмотрев отдельно соответствующие промежутки, а после этого интерес может вызвать только уравнение 4ой степени. А какие вообще степени в нем присутствуют? Как можем действовать с ними?
Подсказка 5
Конечно ввести замену x² = t! Теперь и у него нет шансов, т.к. относительно новой переменной уравнение стало квадратным!
Выпишем условия для определения ОДЗ. Основания обоих логарифмов и оба подлогарифмирумые выражения должны быть больше нуля, а также основания отличны от единицы. что дает нам: Решив эти неравенства, находим, что
После замены , получается уравнение . Рассмотрим эти случаи
- . Если , то . Из ОДЗ остаётся только . Иначе , оба решения не подойдут из ОДЗ.
- . Будем действовать аналогично. Если , то или , в ОДЗ подойдёт только положительное решение. Если , то или . Здесь останется только .
Собирая все полученные ответы, получаем итоговый.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!