Сложные логарифмические уравнения
Ошибка.
Попробуйте повторить позже
Решить уравнение
Подсказка 1
Давайте внимательно посмотрим на две наши скобки. Там похожие логарифмы под корнями и без них. На что тогда можно попробовать умножить обе части нашего уравнение? Конечно, учитывая ОДЗ.
Подсказка 2
Верно, давайте по очереди умножим обе части уравнения сначала на сопряжённое число одной скобки, а потом на другое. Получатся два новых уравнения. Что с ними можно сделать, чтобы совсем избавиться от корней?
Подсказка 3
Да, давайте просто вычтем одно из другого и получим уравнение только с основанием 2. Далее применяя свойства логарифмов, дорешать задачу несложно. Не забудьте про ОДЗ.
Запишем ОДЗ: . Заметим, что на ОДЗ выполнено, что , .
Умножая правую и левую части исходного уравнения на и учитывая, что , получим равносильное уравнение
(1) |
Далее, умножая правую и левую части исходного уравнения на , получим также равносильное уравнение (ниже поменяли местами левую и правую части)
(2) |
Вычитая из уравнения (2) уравнение (1), получаем:
|
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!