Базовые логарифмические уравнения и свойства логарифмов
Ошибка.
Попробуйте повторить позже
Вася придумал новую операцию на множестве положительных чисел
Найдите логарифм числа по основанию
Источники:
Подсказка 1
Новая операция, придуманная Васей, конечно, прекрасна, но работать с ней неудобно, давайте несколько преобразуем её. Если сказать, что a = e^ln(a), тогда Васина операция примет вид a✱b = e^(ln(a)b). Что мы получим, если возьмем натуральный логарифм от данной операции?
Подсказка 2
ln(a✱b) = ln(a)ln(b). Такое обилие натуральных логарифмов явно намекает нам, что удобнее всего будет работать, если мы приведем наше выражение к новому основанию e.
Подсказка 3
Далее несколько раз воспользуемся свойствами логарифма и преобразуем произведения выражений под логарифмом в сумму логарифмов, а отношения - в разность.
Подсказка 4
В итоге должно получится ((ln(a) + ln(b))*(ln(a) + ln(b)) - ln(a)a - ln(b)b) / (ln(a)b). Попробуйте дойти от данного выражения до ответа путем несложных алгебраических преобразований.
Запишем операцию Васи в более удобном виде:
Поэтому
Теперь нужно применить это для вычисления, попутно воспользовавшись свойством логарифмов
Обозначим и Тогда в числителе написано
а в знаменателе . В результате дробь равна 2.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!