Тема . Системы уравнений и неравенств

Арифметические операции над системой

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела системы уравнений и неравенств
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#99220

Решить систему уравнений:

(  x2+ 25y+ 19z = −471
|{   2
|(  y2+23x+ 21z = −397
   z +21x+ 21y = −545

Источники: Газпром - 2023, 11.3 (см. olympiad.gazprom.ru)

Подсказки к задаче

Подсказка 1

Не совсем понятно, как работать с уравнениями по отдельности, поэтому попробуем их как-то связать. Что можно сказать о коэффциеинтах при каждой переменной?

Подсказка 2

Все коэффициенты нечётны, так что просто выделить полный квадрат вряд ли получится (и будет полезным). Но что можно сделать, чтобы всё-таки их собрать?

Подсказка 3

Сложите три уравнения! Тогда в выражении у нас будут и удвоенные произведения, и квадраты!

Показать ответ и решение

Прибавим к первому уравнению два других и выделим полные квадраты по каждой переменной:

 2   2  2
x + y +z + 44x+46y+ 40z =− 1413

 2       2       2
x + 44x+y + 46y+ z+ 40z+ 1413= 0

x2+ 44x+484+ y2+46y+ 529+z2+ 40z+400= 0

(x+ 22)2+ (y +23)2 +(z+ 20)2 = 0

Следовательно, x= −22,y =− 23,z = −20− единственное возможное решение. Проверим это подстановкой в уравнения системы:

(
|{  (− 22)2+ 25⋅(−23)+ 19 ⋅(−20)= 484 − 575− 380= −471
|  (− 23)2+ 23⋅(−22)+ 21 ⋅(−20)= 529 − 506− 420= −397,
(  (− 20)2+ 21⋅(−22)+ 21 ⋅(−23)= 400 − 462− 483= −545.
Ответ:

 (−22;− 23;−20)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!