Арифметическая прогрессия
Ошибка.
Попробуйте повторить позже
Последовательность задана такими равенствами: и
Найдите такие при которых
Источники:
Подсказка 1
Для начала можно переписать условие в более приятном виде: рассмотрите последовательность обратных членов из первой последовательности) Как теперь выглядит наше условие?
Подсказка 2
Теперь мы понимаем, что член новой последовательности равен среднему арифметическому соседних членов. А у какой последовательности как раз есть такое свойство?
Подсказка 3
У арифметической прогрессии! Теперь решить задачу не составит труда,)
В условии задана последовательность, каждый член которой, начиная со второго, является средним гармоническим своих соседей. От такой “гармонической прогрессии” легко перейти к арифметической прогрессии, если рассмотреть последовательность обратных: Тогда условие переписывается в виде
Так что по характеристическому свойству мы имеем арифметическую прогрессию. Из условия задачи находим её первый и второй члены:
Тогда разность равна и по формуле -го члена
Теперь остаётся решить
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!